Cargando…
A bis(pyrazolyl)methane derivative against clinical Staphylococcus aureus strains isolated from otitis externa
OBJECTIVE: The purpose of this study was to evaluate the in vitro antibacterial effects of a p‐Cymene‐based bis(pyrazolyl)methane derivative (SC‐19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE). METHODS: Eightee...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823158/ https://www.ncbi.nlm.nih.gov/pubmed/35155809 http://dx.doi.org/10.1002/lio2.722 |
Sumario: | OBJECTIVE: The purpose of this study was to evaluate the in vitro antibacterial effects of a p‐Cymene‐based bis(pyrazolyl)methane derivative (SC‐19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE). METHODS: Eighteen swab specimens were collected from patients aged over 18 years diagnosed with OE within at least 7 days of symptom onset, contaminated by only one bacterium type: Pseudomonas aeruginosa (n = 5); Staphylococcus aureus (n = 8); Klebsiella aerogenes (n = 2); Serratia marcescens (n = 1); Morganella morganii (n = 2). To appraise antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays were run at different SC‐19 concentrations. RESULTS: When using SC‐19, S. aureus strains showed less bacterial growth, but no bactericidal effect was observed. The MIC and MBC of SC‐19 were 62.5 and 2000 μg/ml against S. aureus and were >2000 μg/ml against the other isolates obtained from OE, respectively. In addition, the MBICs and MBECs of SC‐19 against S. aureus were 125 and >2000 μg/ml, respectively. CONCLUSION: Nowadays the acquired antibiotic resistance phenomenon has stimulated research into novel and more efficient therapeutic agents. Hence, we report that, helped by the structural diversity fostered herein by a range of bis(pyrazolyl)methane derivatives, SC‐19 can be a promising alternative therapeutic option for treating OE caused by S. aureus given the observed effects on both planktonic state and biofilm. LEVEL OF EVIDENCE: IV |
---|