Cargando…
Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans
PURPOSE: To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI. MATERIALS AND METHODS: In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in fema...
Autores principales: | Hirsch, Lukas, Huang, Yu, Luo, Shaojun, Rossi Saccarelli, Carolina, Lo Gullo, Roberto, Daimiel Naranjo, Isaac, Bitencourt, Almir G. V., Onishi, Natsuko, Ko, Eun Sook, Leithner, Doris, Avendano, Daly, Eskreis-Winkler, Sarah, Hughes, Mary, Martinez, Danny F., Pinker, Katja, Juluru, Krishna, El-Rowmeim, Amin E., Elnajjar, Pierre, Morris, Elizabeth A., Makse, Hernan A., Parra, Lucas C., Sutton, Elizabeth J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823456/ https://www.ncbi.nlm.nih.gov/pubmed/35146431 http://dx.doi.org/10.1148/ryai.200231 |
Ejemplares similares
-
Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2020) -
MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival
por: Lo Gullo, Roberto, et al.
Publicado: (2020) -
Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers
por: Lo Gullo, Roberto, et al.
Publicado: (2020) -
MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
por: Bitencourt, Almir G.V., et al.
Publicado: (2020) -
Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy
por: Lo Gullo, Roberto, et al.
Publicado: (2019)