Cargando…

4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome

OBJECTIVES/GOALS: Epilepsy with myoclonic-atonic seizures (EMAS) is a childhood onset epilepsy disorder characterized by seizures with sudden loss of posture, or drop seizures. Our objective was to use short-read genome sequencing in 40 EMAS trios to better understand variants contributing to the de...

Descripción completa

Detalles Bibliográficos
Autores principales: Calhoun, Jeffrey Dennis, Gunti, Jonathan, Angione, Katie, Geiger, Elizabeth, Eschbach, Krista, Smith, Garnett, Joshi, Charuta, Shaikh, Tamim, Demarest, Scott, Carvill, Gemma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823619/
http://dx.doi.org/10.1017/cts.2020.84
_version_ 1784646841150734336
author Calhoun, Jeffrey Dennis
Gunti, Jonathan
Angione, Katie
Geiger, Elizabeth
Eschbach, Krista
Smith, Garnett
Joshi, Charuta
Shaikh, Tamim
Demarest, Scott
Carvill, Gemma
author_facet Calhoun, Jeffrey Dennis
Gunti, Jonathan
Angione, Katie
Geiger, Elizabeth
Eschbach, Krista
Smith, Garnett
Joshi, Charuta
Shaikh, Tamim
Demarest, Scott
Carvill, Gemma
author_sort Calhoun, Jeffrey Dennis
collection PubMed
description OBJECTIVES/GOALS: Epilepsy with myoclonic-atonic seizures (EMAS) is a childhood onset epilepsy disorder characterized by seizures with sudden loss of posture, or drop seizures. Our objective was to use short-read genome sequencing in 40 EMAS trios to better understand variants contributing to the development of EMAS. METHODS/STUDY POPULATION: Eligibility for the cohort included a potential diagnosis of EMAS by child neurology faculty at Children’s Hospital Colorado. Exclusion criteria included lack of drop seizures upon chart review or structural abnormality on MRI. Some individuals had prior genetic testing and priority for genome sequencing was given to individuals without clear genetic diagnosis based on previous testing. We analyzed single nucleotide variants (SNVs), small insertions and deletions (INDELs), and larger structural variants (SVs) from trio genomes and determined those that were likely contributory based on standardized American College of Medical Genetics (ACMG) criteria. RESULTS/ANTICIPATED RESULTS: Our initial analysis focused on variants in coding regions of known epilepsy-associated genes. We identified pathogenic or likely pathogenic variants in 6 different individuals involving 6 unique genes. Of these, 5 are de novo SNVs or INDELs and 1 is a de novo SV. One of these involve a de novo heterozygous variant in an X-linked gene (ARHGEF9) in a female individual. We hypothesize the skewed X-inactivation may result in primarily expression of the pathogenic variant. We anticipate identifying additional candidate variants in coding regions of genes previously not associated with EMAS or pediatric epilepsies as well as in noncoding regions of the genome. DISCUSSION/SIGNIFICANCE OF IMPACT: Despite the genetic heterogeneity of EMAS, our initial analysis identified de novo pathogenic or likely pathogenic variants in 15% (6/40) of our cohort. As the cost continues to decline, short read genome sequencing represents a promising diagnostic tool for EMAS and other pediatric onset epilepsy syndromes. CONFLICT OF INTEREST DESCRIPTION: The authors have no conflicts of interest to disclose. SD has consulted for Upsher-Smith, Biomarin and Neurogene on an unrelated subject matter. GLC holds a research collaborative grant with Stoke therapeutics on unrelated subject matter.
format Online
Article
Text
id pubmed-8823619
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-88236192022-02-18 4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome Calhoun, Jeffrey Dennis Gunti, Jonathan Angione, Katie Geiger, Elizabeth Eschbach, Krista Smith, Garnett Joshi, Charuta Shaikh, Tamim Demarest, Scott Carvill, Gemma J Clin Transl Sci Basic Science/Methodology OBJECTIVES/GOALS: Epilepsy with myoclonic-atonic seizures (EMAS) is a childhood onset epilepsy disorder characterized by seizures with sudden loss of posture, or drop seizures. Our objective was to use short-read genome sequencing in 40 EMAS trios to better understand variants contributing to the development of EMAS. METHODS/STUDY POPULATION: Eligibility for the cohort included a potential diagnosis of EMAS by child neurology faculty at Children’s Hospital Colorado. Exclusion criteria included lack of drop seizures upon chart review or structural abnormality on MRI. Some individuals had prior genetic testing and priority for genome sequencing was given to individuals without clear genetic diagnosis based on previous testing. We analyzed single nucleotide variants (SNVs), small insertions and deletions (INDELs), and larger structural variants (SVs) from trio genomes and determined those that were likely contributory based on standardized American College of Medical Genetics (ACMG) criteria. RESULTS/ANTICIPATED RESULTS: Our initial analysis focused on variants in coding regions of known epilepsy-associated genes. We identified pathogenic or likely pathogenic variants in 6 different individuals involving 6 unique genes. Of these, 5 are de novo SNVs or INDELs and 1 is a de novo SV. One of these involve a de novo heterozygous variant in an X-linked gene (ARHGEF9) in a female individual. We hypothesize the skewed X-inactivation may result in primarily expression of the pathogenic variant. We anticipate identifying additional candidate variants in coding regions of genes previously not associated with EMAS or pediatric epilepsies as well as in noncoding regions of the genome. DISCUSSION/SIGNIFICANCE OF IMPACT: Despite the genetic heterogeneity of EMAS, our initial analysis identified de novo pathogenic or likely pathogenic variants in 15% (6/40) of our cohort. As the cost continues to decline, short read genome sequencing represents a promising diagnostic tool for EMAS and other pediatric onset epilepsy syndromes. CONFLICT OF INTEREST DESCRIPTION: The authors have no conflicts of interest to disclose. SD has consulted for Upsher-Smith, Biomarin and Neurogene on an unrelated subject matter. GLC holds a research collaborative grant with Stoke therapeutics on unrelated subject matter. Cambridge University Press 2020-07-29 /pmc/articles/PMC8823619/ http://dx.doi.org/10.1017/cts.2020.84 Text en © The Association for Clinical and Translational Science 2020 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Basic Science/Methodology
Calhoun, Jeffrey Dennis
Gunti, Jonathan
Angione, Katie
Geiger, Elizabeth
Eschbach, Krista
Smith, Garnett
Joshi, Charuta
Shaikh, Tamim
Demarest, Scott
Carvill, Gemma
4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome
title 4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome
title_full 4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome
title_fullStr 4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome
title_full_unstemmed 4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome
title_short 4478 Not just GLUT1: genome sequencing reveals genetic heterogeneity in Doose syndrome
title_sort 4478 not just glut1: genome sequencing reveals genetic heterogeneity in doose syndrome
topic Basic Science/Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823619/
http://dx.doi.org/10.1017/cts.2020.84
work_keys_str_mv AT calhounjeffreydennis 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT guntijonathan 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT angionekatie 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT geigerelizabeth 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT eschbachkrista 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT smithgarnett 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT joshicharuta 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT shaikhtamim 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT demarestscott 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome
AT carvillgemma 4478notjustglut1genomesequencingrevealsgeneticheterogeneityindoosesyndrome