Cargando…
CITEMO(XMBD): A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells
Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is a promising approach to link transcriptional changes to cellular phenotype and function, requiring new computational methods to define cellular subtypes and states based on multiple data types. Here,...
Autores principales: | Hu, Huan, Liu, Ruiqi, Zhao, Chunlin, Lu, Yuer, Xiong, Yichun, Chen, Lingling, Jin, Jun, Ma, Yunlong, Su, Jianzhong, Yu, Zhengquan, Cheng, Feng, Ye, Fangfu, Liu, Liyu, Zhao, Qi, Shuai, Jianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824218/ https://www.ncbi.nlm.nih.gov/pubmed/35130112 http://dx.doi.org/10.1080/15476286.2022.2027151 |
Ejemplares similares
-
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
por: He, Qingzu, et al.
Publicado: (2023) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Deep representation features from DreamDIA(XMBD) improve the analysis of data-independent acquisition proteomics
por: Gao, Mingxuan, et al.
Publicado: (2021) -
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
por: Lin, Yating, et al.
Publicado: (2022) -
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022)