Cargando…
Reducing calibration time in motor imagery-based BCIs by data alignment and empirical mode decomposition
One of the major reasons that limit the practical applications of a brain-computer interface (BCI) is its long calibration time. In this paper, we propose a novel approach to reducing the calibration time of motor imagery (MI)-based BCIs without sacrificing classification accuracy. The approach aims...
Autores principales: | Xiong, Wei, Wei, Qingguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824327/ https://www.ncbi.nlm.nih.gov/pubmed/35134085 http://dx.doi.org/10.1371/journal.pone.0263641 |
Ejemplares similares
-
Temporal Combination Pattern Optimization Based on Feature Selection Method for Motor Imagery BCIs
por: Jiang, Jing, et al.
Publicado: (2020) -
Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs
por: Ying, Jiahui, et al.
Publicado: (2022) -
The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning
por: Alimardani, Maryam, et al.
Publicado: (2016) -
An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender
por: Cantillo-Negrete, Jessica, et al.
Publicado: (2014) -
Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery BCIs
por: Georgiadis, Kostas, et al.
Publicado: (2018)