Cargando…
Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels
Deep learning increasingly accelerates biomedical research, deploying neural networks for multiple tasks, such as image classification, object detection, and semantic segmentation. However, neural networks are commonly trained supervised on large-scale, labeled datasets. These prerequisites raise is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824336/ https://www.ncbi.nlm.nih.gov/pubmed/35134081 http://dx.doi.org/10.1371/journal.pone.0263656 |
_version_ | 1784646993385095168 |
---|---|
author | Schutera, Mark Rettenberger, Luca Pylatiuk, Christian Reischl, Markus |
author_facet | Schutera, Mark Rettenberger, Luca Pylatiuk, Christian Reischl, Markus |
author_sort | Schutera, Mark |
collection | PubMed |
description | Deep learning increasingly accelerates biomedical research, deploying neural networks for multiple tasks, such as image classification, object detection, and semantic segmentation. However, neural networks are commonly trained supervised on large-scale, labeled datasets. These prerequisites raise issues in biomedical image recognition, as datasets are generally small-scale, challenging to obtain, expensive to label, and frequently heterogeneously labeled. Furthermore, heterogeneous labels are a challenge for supervised methods. If not all classes are labeled for an individual sample, supervised deep learning approaches can only learn on a subset of the dataset with common labels for each individual sample; consequently, biomedical image recognition engineers need to be frugal concerning their label and ground truth requirements. This paper discusses the effects of frugal labeling and proposes to train neural networks for multi-class semantic segmentation on heterogeneously labeled data based on a novel objective function. The objective function combines a class asymmetric loss with the Dice loss. The approach is demonstrated for training on the sparse ground truth of a heterogeneous labeled dataset, training within a transfer learning setting, and the use-case of merging multiple heterogeneously labeled datasets. For this purpose, a biomedical small-scale, multi-class semantic segmentation dataset is utilized. The heartSeg dataset is based on the medaka fish’s position as a cardiac model system. Automating image recognition and semantic segmentation enables high-throughput experiments and is essential for biomedical research. Our approach and analysis show competitive results in supervised training regimes and encourage frugal labeling within biomedical image recognition. |
format | Online Article Text |
id | pubmed-8824336 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-88243362022-02-09 Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels Schutera, Mark Rettenberger, Luca Pylatiuk, Christian Reischl, Markus PLoS One Research Article Deep learning increasingly accelerates biomedical research, deploying neural networks for multiple tasks, such as image classification, object detection, and semantic segmentation. However, neural networks are commonly trained supervised on large-scale, labeled datasets. These prerequisites raise issues in biomedical image recognition, as datasets are generally small-scale, challenging to obtain, expensive to label, and frequently heterogeneously labeled. Furthermore, heterogeneous labels are a challenge for supervised methods. If not all classes are labeled for an individual sample, supervised deep learning approaches can only learn on a subset of the dataset with common labels for each individual sample; consequently, biomedical image recognition engineers need to be frugal concerning their label and ground truth requirements. This paper discusses the effects of frugal labeling and proposes to train neural networks for multi-class semantic segmentation on heterogeneously labeled data based on a novel objective function. The objective function combines a class asymmetric loss with the Dice loss. The approach is demonstrated for training on the sparse ground truth of a heterogeneous labeled dataset, training within a transfer learning setting, and the use-case of merging multiple heterogeneously labeled datasets. For this purpose, a biomedical small-scale, multi-class semantic segmentation dataset is utilized. The heartSeg dataset is based on the medaka fish’s position as a cardiac model system. Automating image recognition and semantic segmentation enables high-throughput experiments and is essential for biomedical research. Our approach and analysis show competitive results in supervised training regimes and encourage frugal labeling within biomedical image recognition. Public Library of Science 2022-02-08 /pmc/articles/PMC8824336/ /pubmed/35134081 http://dx.doi.org/10.1371/journal.pone.0263656 Text en © 2022 Schutera et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Schutera, Mark Rettenberger, Luca Pylatiuk, Christian Reischl, Markus Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels |
title | Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels |
title_full | Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels |
title_fullStr | Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels |
title_full_unstemmed | Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels |
title_short | Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels |
title_sort | methods for the frugal labeler: multi-class semantic segmentation on heterogeneous labels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824336/ https://www.ncbi.nlm.nih.gov/pubmed/35134081 http://dx.doi.org/10.1371/journal.pone.0263656 |
work_keys_str_mv | AT schuteramark methodsforthefrugallabelermulticlasssemanticsegmentationonheterogeneouslabels AT rettenbergerluca methodsforthefrugallabelermulticlasssemanticsegmentationonheterogeneouslabels AT pylatiukchristian methodsforthefrugallabelermulticlasssemanticsegmentationonheterogeneouslabels AT reischlmarkus methodsforthefrugallabelermulticlasssemanticsegmentationonheterogeneouslabels |