Cargando…

Optimal control of hybrid variable-order fractional coronavirus (2019-nCov) mathematical model; numerical treatments

A novel coronavirus is a serious global issue and has a negative impact on the economy of Egypt. According to the publicly reported data, the first case of the novel corona virus in Egypt was reported on 14 February 2020. Total of 96753 cases were recorded in Egypt from the beginning of the pandemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Sweilam, N.H., AL-Mekhlafi, S.M., Al-Ajami, T.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824386/
http://dx.doi.org/10.1016/j.ecocom.2022.100983
Descripción
Sumario:A novel coronavirus is a serious global issue and has a negative impact on the economy of Egypt. According to the publicly reported data, the first case of the novel corona virus in Egypt was reported on 14 February 2020. Total of 96753 cases were recorded in Egypt from the beginning of the pandemic until the eighteenth of August, where 96, 581 individuals were Egyptians and 172 were foreigners. Recently, many mathematical models have been considered to better understand coronavirus infection. Most of these models are based on classical integer-order derivatives which can not capture the fading memory and crossover behavior found in many biological phenomena. Therefore, we study the coronavirus disease in this paper by exploring the dynamics of COVID-19 infection using new variable-order fractional derivatives. This paper presents an optimal control problem of the hybrid variable-order fractional model of Coronavirus. The variable-order fractional operator is modified by an auxiliary parameter in order to satisfy the dimensional matching between the both sides of the resultant variable-order fractional equations. Existence, uniqueness, boundedness, positivity, local and global stability of the solutions are proved. Two control variables are considered to reduce the transmission of infection into healthy people. To approximate the new hybrid variable-order operator, Grünwald-Letnikov approximation is used. Finite difference method with a hybrid variable-order operator and generalized fourth order Runge-Kutta method are used to solve the optimality system. Numerical examples and comparative studies for testing the applicability of the utilized methods and to show the simplicity of these approximation approaches are presented. Moreover, by using the proposed methods we can concluded that, the model given in this paper describes well the confirmed real data given by WHO about Egypt.