Cargando…
Machine Learning–Based Analysis of Treatment Sequences Typology in Advanced Non–Small-Cell Lung Cancer Long-Term Survivors Treated With Nivolumab
Immune checkpoint inhibitors substantially changed advanced non–small-cell lung cancer (aNSCLC) management and can lead to long-term survival. The aims of this study were (1) to use a machine learning method to establish a typology of treatment sequences on patients with aNSCLC who were alive 2 year...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824409/ https://www.ncbi.nlm.nih.gov/pubmed/35113656 http://dx.doi.org/10.1200/CCI.21.00108 |
Sumario: | Immune checkpoint inhibitors substantially changed advanced non–small-cell lung cancer (aNSCLC) management and can lead to long-term survival. The aims of this study were (1) to use a machine learning method to establish a typology of treatment sequences on patients with aNSCLC who were alive 2 years after initiating a treatment with anti–programmed death-ligand 1 monoclonal antibody nivolumab and (2) to describe the patients' characteristics according to the typology of treatment sequences. MATERIALS AND METHODS: This retrospective observational study was based on data from the comprehensive French hospital discharge database for all patients with lung cancer with at least one line of platinum-based chemotherapy, starting nivolumab between January 1, 2015, and December 31, 2016, and alive 2 years after nivolumab treatment initiation. Patients were followed until December 31, 2018. A typology of most common treatment sequences was established using hierarchical clustering with time sequence analysis. RESULTS: Two thousand two hundred twelve study patients were, on average, 63.0 years old, 69.9% of them were men, and 61.9% had a nonsquamous cell carcinoma. During the 2 years after nivolumab treatment initiation, clusters of patients with four basic types of treatment sequences were identified: (1) almost continuous nivolumab treatment (44% of patients); (2) nivolumab most of the time followed by a treatment-free interval or a chemotherapy (15% of patients); and a short or medium nivolumab treatment, followed by (3) a long systemic treatment-free interval (17% of patients) or (4) a long chemotherapy (23% of patients). CONCLUSION: This machine learning approach enabled the identification of a typology of four representative treatment sequences observed in long-term survival. It was noted that most long-term survivors were treated with nivolumab for well over 1 year. |
---|