Cargando…
Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
AIMS: We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. METHODS AND RESULTS: The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) w...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824514/ https://www.ncbi.nlm.nih.gov/pubmed/34392336 http://dx.doi.org/10.1093/europace/euab170 |
_version_ | 1784647029880782848 |
---|---|
author | D’Onofrio, Antonio Solimene, Francesco Calò, Leonardo Calvi, Valeria Viscusi, Miguel Melissano, Donato Russo, Vitantonio Rapacciuolo, Antonio Campana, Andrea Caravati, Fabrizio Bonfanti, Paolo Zanotto, Gabriele Gronda, Edoardo Vado, Antonello Calzolari, Vittorio Botto, Giovanni Luca Zecchin, Massimo Bontempi, Luca Giacopelli, Daniele Gargaro, Alessio Padeletti, Luigi |
author_facet | D’Onofrio, Antonio Solimene, Francesco Calò, Leonardo Calvi, Valeria Viscusi, Miguel Melissano, Donato Russo, Vitantonio Rapacciuolo, Antonio Campana, Andrea Caravati, Fabrizio Bonfanti, Paolo Zanotto, Gabriele Gronda, Edoardo Vado, Antonello Calzolari, Vittorio Botto, Giovanni Luca Zecchin, Massimo Bontempi, Luca Giacopelli, Daniele Gargaro, Alessio Padeletti, Luigi |
author_sort | D’Onofrio, Antonio |
collection | PubMed |
description | AIMS: We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. METHODS AND RESULTS: The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) with cardiac resynchronization therapy (44%), dual-chamber (38%), or single-chamber defibrillators with atrial diagnostics (18%). To develop a predictive algorithm, temporal trends of diurnal and nocturnal heart rates, ventricular extrasystoles, atrial tachyarrhythmia burden, heart rate variability, physical activity, and thoracic impedance obtained by daily automatic RM were combined with a baseline risk-stratifier (Seattle HF Model) into one index. The primary endpoint was the first post-implant adjudicated HF hospitalization. After a median follow-up of 22.5 months since enrolment, patients were randomly allocated to the algorithm derivation group (n = 457; 31 endpoints) or algorithm validation group (n = 461; 29 endpoints). In the derivation group, the index showed a C-statistics of 0.89 [95% confidence interval (CI): 0.83–0.95] with 2.73 odds ratio (CI 1.98–3.78) for first HF hospitalization per unitary increase of index value (P < 0.001). In the validation group, sensitivity of predicting primary endpoint was 65.5% (CI 45.7–82.1%), median alerting time 42 days (interquartile range 21–89), and false (or unexplained) alert rate 0.69 (CI 0.64–0.74) [or 0.63 (CI 0.58–0.68)] per patient-year. Without the baseline risk-stratifier, the sensitivity remained 65.5% and the false/unexplained alert rates increased by ≈10% to 0.76/0.71 per patient-year. CONCLUSION: With the developed algorithm, two-thirds of first post-implant HF hospitalizations could be predicted timely with only 0.7 false alerts per patient-year. |
format | Online Article Text |
id | pubmed-8824514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88245142022-02-09 Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study D’Onofrio, Antonio Solimene, Francesco Calò, Leonardo Calvi, Valeria Viscusi, Miguel Melissano, Donato Russo, Vitantonio Rapacciuolo, Antonio Campana, Andrea Caravati, Fabrizio Bonfanti, Paolo Zanotto, Gabriele Gronda, Edoardo Vado, Antonello Calzolari, Vittorio Botto, Giovanni Luca Zecchin, Massimo Bontempi, Luca Giacopelli, Daniele Gargaro, Alessio Padeletti, Luigi Europace Clinical Research AIMS: We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. METHODS AND RESULTS: The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) with cardiac resynchronization therapy (44%), dual-chamber (38%), or single-chamber defibrillators with atrial diagnostics (18%). To develop a predictive algorithm, temporal trends of diurnal and nocturnal heart rates, ventricular extrasystoles, atrial tachyarrhythmia burden, heart rate variability, physical activity, and thoracic impedance obtained by daily automatic RM were combined with a baseline risk-stratifier (Seattle HF Model) into one index. The primary endpoint was the first post-implant adjudicated HF hospitalization. After a median follow-up of 22.5 months since enrolment, patients were randomly allocated to the algorithm derivation group (n = 457; 31 endpoints) or algorithm validation group (n = 461; 29 endpoints). In the derivation group, the index showed a C-statistics of 0.89 [95% confidence interval (CI): 0.83–0.95] with 2.73 odds ratio (CI 1.98–3.78) for first HF hospitalization per unitary increase of index value (P < 0.001). In the validation group, sensitivity of predicting primary endpoint was 65.5% (CI 45.7–82.1%), median alerting time 42 days (interquartile range 21–89), and false (or unexplained) alert rate 0.69 (CI 0.64–0.74) [or 0.63 (CI 0.58–0.68)] per patient-year. Without the baseline risk-stratifier, the sensitivity remained 65.5% and the false/unexplained alert rates increased by ≈10% to 0.76/0.71 per patient-year. CONCLUSION: With the developed algorithm, two-thirds of first post-implant HF hospitalizations could be predicted timely with only 0.7 false alerts per patient-year. Oxford University Press 2021-08-15 /pmc/articles/PMC8824514/ /pubmed/34392336 http://dx.doi.org/10.1093/europace/euab170 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Clinical Research D’Onofrio, Antonio Solimene, Francesco Calò, Leonardo Calvi, Valeria Viscusi, Miguel Melissano, Donato Russo, Vitantonio Rapacciuolo, Antonio Campana, Andrea Caravati, Fabrizio Bonfanti, Paolo Zanotto, Gabriele Gronda, Edoardo Vado, Antonello Calzolari, Vittorio Botto, Giovanni Luca Zecchin, Massimo Bontempi, Luca Giacopelli, Daniele Gargaro, Alessio Padeletti, Luigi Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study |
title | Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study |
title_full | Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study |
title_fullStr | Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study |
title_full_unstemmed | Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study |
title_short | Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study |
title_sort | combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the selene hf study |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824514/ https://www.ncbi.nlm.nih.gov/pubmed/34392336 http://dx.doi.org/10.1093/europace/euab170 |
work_keys_str_mv | AT donofrioantonio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT solimenefrancesco combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT caloleonardo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT calvivaleria combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT viscusimiguel combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT melissanodonato combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT russovitantonio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT rapacciuoloantonio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT campanaandrea combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT caravatifabrizio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT bonfantipaolo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT zanottogabriele combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT grondaedoardo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT vadoantonello combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT calzolarivittorio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT bottogiovanniluca combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT zecchinmassimo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT bontempiluca combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT giacopellidaniele combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT gargaroalessio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy AT padelettiluigi combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy |