Cargando…

Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study

AIMS: We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. METHODS AND RESULTS: The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) w...

Descripción completa

Detalles Bibliográficos
Autores principales: D’Onofrio, Antonio, Solimene, Francesco, Calò, Leonardo, Calvi, Valeria, Viscusi, Miguel, Melissano, Donato, Russo, Vitantonio, Rapacciuolo, Antonio, Campana, Andrea, Caravati, Fabrizio, Bonfanti, Paolo, Zanotto, Gabriele, Gronda, Edoardo, Vado, Antonello, Calzolari, Vittorio, Botto, Giovanni Luca, Zecchin, Massimo, Bontempi, Luca, Giacopelli, Daniele, Gargaro, Alessio, Padeletti, Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824514/
https://www.ncbi.nlm.nih.gov/pubmed/34392336
http://dx.doi.org/10.1093/europace/euab170
_version_ 1784647029880782848
author D’Onofrio, Antonio
Solimene, Francesco
Calò, Leonardo
Calvi, Valeria
Viscusi, Miguel
Melissano, Donato
Russo, Vitantonio
Rapacciuolo, Antonio
Campana, Andrea
Caravati, Fabrizio
Bonfanti, Paolo
Zanotto, Gabriele
Gronda, Edoardo
Vado, Antonello
Calzolari, Vittorio
Botto, Giovanni Luca
Zecchin, Massimo
Bontempi, Luca
Giacopelli, Daniele
Gargaro, Alessio
Padeletti, Luigi
author_facet D’Onofrio, Antonio
Solimene, Francesco
Calò, Leonardo
Calvi, Valeria
Viscusi, Miguel
Melissano, Donato
Russo, Vitantonio
Rapacciuolo, Antonio
Campana, Andrea
Caravati, Fabrizio
Bonfanti, Paolo
Zanotto, Gabriele
Gronda, Edoardo
Vado, Antonello
Calzolari, Vittorio
Botto, Giovanni Luca
Zecchin, Massimo
Bontempi, Luca
Giacopelli, Daniele
Gargaro, Alessio
Padeletti, Luigi
author_sort D’Onofrio, Antonio
collection PubMed
description AIMS: We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. METHODS AND RESULTS: The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) with cardiac resynchronization therapy (44%), dual-chamber (38%), or single-chamber defibrillators with atrial diagnostics (18%). To develop a predictive algorithm, temporal trends of diurnal and nocturnal heart rates, ventricular extrasystoles, atrial tachyarrhythmia burden, heart rate variability, physical activity, and thoracic impedance obtained by daily automatic RM were combined with a baseline risk-stratifier (Seattle HF Model) into one index. The primary endpoint was the first post-implant adjudicated HF hospitalization. After a median follow-up of 22.5 months since enrolment, patients were randomly allocated to the algorithm derivation group (n = 457; 31 endpoints) or algorithm validation group (n = 461; 29 endpoints). In the derivation group, the index showed a C-statistics of 0.89 [95% confidence interval (CI): 0.83–0.95] with 2.73 odds ratio (CI 1.98–3.78) for first HF hospitalization per unitary increase of index value (P < 0.001). In the validation group, sensitivity of predicting primary endpoint was 65.5% (CI 45.7–82.1%), median alerting time 42 days (interquartile range 21–89), and false (or unexplained) alert rate 0.69 (CI 0.64–0.74) [or 0.63 (CI 0.58–0.68)] per patient-year. Without the baseline risk-stratifier, the sensitivity remained 65.5% and the false/unexplained alert rates increased by ≈10% to 0.76/0.71 per patient-year. CONCLUSION: With the developed algorithm, two-thirds of first post-implant HF hospitalizations could be predicted timely with only 0.7 false alerts per patient-year.
format Online
Article
Text
id pubmed-8824514
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-88245142022-02-09 Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study D’Onofrio, Antonio Solimene, Francesco Calò, Leonardo Calvi, Valeria Viscusi, Miguel Melissano, Donato Russo, Vitantonio Rapacciuolo, Antonio Campana, Andrea Caravati, Fabrizio Bonfanti, Paolo Zanotto, Gabriele Gronda, Edoardo Vado, Antonello Calzolari, Vittorio Botto, Giovanni Luca Zecchin, Massimo Bontempi, Luca Giacopelli, Daniele Gargaro, Alessio Padeletti, Luigi Europace Clinical Research AIMS: We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. METHODS AND RESULTS: The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) with cardiac resynchronization therapy (44%), dual-chamber (38%), or single-chamber defibrillators with atrial diagnostics (18%). To develop a predictive algorithm, temporal trends of diurnal and nocturnal heart rates, ventricular extrasystoles, atrial tachyarrhythmia burden, heart rate variability, physical activity, and thoracic impedance obtained by daily automatic RM were combined with a baseline risk-stratifier (Seattle HF Model) into one index. The primary endpoint was the first post-implant adjudicated HF hospitalization. After a median follow-up of 22.5 months since enrolment, patients were randomly allocated to the algorithm derivation group (n = 457; 31 endpoints) or algorithm validation group (n = 461; 29 endpoints). In the derivation group, the index showed a C-statistics of 0.89 [95% confidence interval (CI): 0.83–0.95] with 2.73 odds ratio (CI 1.98–3.78) for first HF hospitalization per unitary increase of index value (P < 0.001). In the validation group, sensitivity of predicting primary endpoint was 65.5% (CI 45.7–82.1%), median alerting time 42 days (interquartile range 21–89), and false (or unexplained) alert rate 0.69 (CI 0.64–0.74) [or 0.63 (CI 0.58–0.68)] per patient-year. Without the baseline risk-stratifier, the sensitivity remained 65.5% and the false/unexplained alert rates increased by ≈10% to 0.76/0.71 per patient-year. CONCLUSION: With the developed algorithm, two-thirds of first post-implant HF hospitalizations could be predicted timely with only 0.7 false alerts per patient-year. Oxford University Press 2021-08-15 /pmc/articles/PMC8824514/ /pubmed/34392336 http://dx.doi.org/10.1093/europace/euab170 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Clinical Research
D’Onofrio, Antonio
Solimene, Francesco
Calò, Leonardo
Calvi, Valeria
Viscusi, Miguel
Melissano, Donato
Russo, Vitantonio
Rapacciuolo, Antonio
Campana, Andrea
Caravati, Fabrizio
Bonfanti, Paolo
Zanotto, Gabriele
Gronda, Edoardo
Vado, Antonello
Calzolari, Vittorio
Botto, Giovanni Luca
Zecchin, Massimo
Bontempi, Luca
Giacopelli, Daniele
Gargaro, Alessio
Padeletti, Luigi
Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
title Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
title_full Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
title_fullStr Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
title_full_unstemmed Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
title_short Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study
title_sort combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the selene hf study
topic Clinical Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824514/
https://www.ncbi.nlm.nih.gov/pubmed/34392336
http://dx.doi.org/10.1093/europace/euab170
work_keys_str_mv AT donofrioantonio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT solimenefrancesco combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT caloleonardo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT calvivaleria combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT viscusimiguel combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT melissanodonato combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT russovitantonio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT rapacciuoloantonio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT campanaandrea combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT caravatifabrizio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT bonfantipaolo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT zanottogabriele combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT grondaedoardo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT vadoantonello combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT calzolarivittorio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT bottogiovanniluca combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT zecchinmassimo combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT bontempiluca combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT giacopellidaniele combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT gargaroalessio combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy
AT padelettiluigi combininghomemonitoringtemporaltrendsfromimplanteddefibrillatorsandbaselinepatientriskprofiletopredictheartfailurehospitalizationsresultsfromtheselenehfstudy