Cargando…

Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response

Detalles Bibliográficos
Autor principal: Kenchanmane Raju, Sunil Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824588/
https://www.ncbi.nlm.nih.gov/pubmed/35231110
http://dx.doi.org/10.1093/plcell/koab288
_version_ 1784647041944649728
author Kenchanmane Raju, Sunil Kumar
author_facet Kenchanmane Raju, Sunil Kumar
author_sort Kenchanmane Raju, Sunil Kumar
collection PubMed
description
format Online
Article
Text
id pubmed-8824588
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-88245882022-02-09 Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response Kenchanmane Raju, Sunil Kumar Plant Cell In Brief Oxford University Press 2021-12-07 /pmc/articles/PMC8824588/ /pubmed/35231110 http://dx.doi.org/10.1093/plcell/koab288 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle In Brief
Kenchanmane Raju, Sunil Kumar
Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response
title Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response
title_full Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response
title_fullStr Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response
title_full_unstemmed Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response
title_short Machine learning models reveal the importance of time-point specific cis-regulatory elements in Arabidopsis thaliana wounding response
title_sort machine learning models reveal the importance of time-point specific cis-regulatory elements in arabidopsis thaliana wounding response
topic In Brief
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824588/
https://www.ncbi.nlm.nih.gov/pubmed/35231110
http://dx.doi.org/10.1093/plcell/koab288
work_keys_str_mv AT kenchanmanerajusunilkumar machinelearningmodelsrevealtheimportanceoftimepointspecificcisregulatoryelementsinarabidopsisthalianawoundingresponse