Cargando…
SASC: A simple approach to synthetic cohorts for generating longitudinal observational patient cohorts from COVID-19 clinical data
One of the impacts of the coronavirus disease 2019 (COVID-19) pandemic has been a push for researchers to better exploit synthetic data and accelerate the design, analysis, and modeling of clinical trials. The unprecedented clinical efforts caused by COVID-19’s emergence will certainly boost future...
Autores principales: | Khorchani, Takoua, Gadiya, Yojana, Witt, Gesa, Lanzillotta, Delia, Claussen, Carsten, Zaliani, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825316/ https://www.ncbi.nlm.nih.gov/pubmed/35156066 http://dx.doi.org/10.1016/j.patter.2022.100453 |
Ejemplares similares
-
Pharmacophore-Based
Machine Learning Model To Predict
Ligand Selectivity for E3 Ligase Binders
por: Karki, Reagon, et al.
Publicado: (2023) -
Mpox Knowledge Graph: a comprehensive representation embedding chemical entities and associated biology of Mpox
por: Karki, Reagon, et al.
Publicado: (2023) -
PEMT: a patent enrichment tool for drug discovery
por: Gadiya, Yojana, et al.
Publicado: (2022) -
A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection
por: Ellinger, Bernhard, et al.
Publicado: (2021) -
The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering
por: Shah, Shiv, et al.
Publicado: (2022)