Cargando…
A convolutional neural network for segmentation of yeast cells without manual training annotations
MOTIVATION: Single-cell time-lapse microscopy is a ubiquitous tool for studying the dynamics of complex cellular processes. While imaging can be automated to generate very large volumes of data, the processing of the resulting movies to extract high-quality single-cell information remains a challeng...
Autores principales: | Kruitbosch, Herbert T, Mzayek, Yasmin, Omlor, Sara, Guerra, Paolo, Milias-Argeitis, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825468/ https://www.ncbi.nlm.nih.gov/pubmed/34893817 http://dx.doi.org/10.1093/bioinformatics/btab835 |
Ejemplares similares
-
Systematic In Vivo Characterization
of Fluorescent Protein Maturation in Budding Yeast
por: Guerra, Paolo, et al.
Publicado: (2022) -
A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast
por: Novarina, Daniele, et al.
Publicado: (2022) -
TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle
por: Guerra, Paolo, et al.
Publicado: (2022) -
Training a deep learning model for single-cell segmentation without manual annotation
por: Din, Nizam Ud, et al.
Publicado: (2021) -
Elucidation of Genetic Interactions in the Yeast GATA-Factor Network Using Bayesian Model Selection
por: Milias-Argeitis, Andreas, et al.
Publicado: (2016)