Cargando…

Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation

Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Aladeitan, Benedicta B., Adebimpe, Olukayode, Lukman, Adewale F., Oludoun, Olajumoke, Abiodun, Oluwakemi E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825644/
https://www.ncbi.nlm.nih.gov/pubmed/35186265
http://dx.doi.org/10.12688/f1000research.53987.2
_version_ 1784647265893220352
author Aladeitan, Benedicta B.
Adebimpe, Olukayode
Lukman, Adewale F.
Oludoun, Olajumoke
Abiodun, Oluwakemi E.
author_facet Aladeitan, Benedicta B.
Adebimpe, Olukayode
Lukman, Adewale F.
Oludoun, Olajumoke
Abiodun, Oluwakemi E.
author_sort Aladeitan, Benedicta B.
collection PubMed
description Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literature shows that the KL estimator is preferred. Therefore, this study sought to modify the KL estimator to mitigate the Poisson Regression Model with multicollinearity. Methods: A simulation study and a real-life study was carried out and the performance of the new estimator was compared with some of the existing estimators. Results: The simulation result showed the new estimator performed more efficiently than the MLE, Poisson Ridge Regression Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL (PKL) estimators. The real-life application also agreed with the simulation result. Conclusions: In general, the new estimator performed more efficiently than the MLE, PRE, PLE and the PKL when multicollinearity was present.
format Online
Article
Text
id pubmed-8825644
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-88256442022-02-17 Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation Aladeitan, Benedicta B. Adebimpe, Olukayode Lukman, Adewale F. Oludoun, Olajumoke Abiodun, Oluwakemi E. F1000Res Research Article Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literature shows that the KL estimator is preferred. Therefore, this study sought to modify the KL estimator to mitigate the Poisson Regression Model with multicollinearity. Methods: A simulation study and a real-life study was carried out and the performance of the new estimator was compared with some of the existing estimators. Results: The simulation result showed the new estimator performed more efficiently than the MLE, Poisson Ridge Regression Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL (PKL) estimators. The real-life application also agreed with the simulation result. Conclusions: In general, the new estimator performed more efficiently than the MLE, PRE, PLE and the PKL when multicollinearity was present. F1000 Research Limited 2021-12-14 /pmc/articles/PMC8825644/ /pubmed/35186265 http://dx.doi.org/10.12688/f1000research.53987.2 Text en Copyright: © 2021 Aladeitan BB et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Aladeitan, Benedicta B.
Adebimpe, Olukayode
Lukman, Adewale F.
Oludoun, Olajumoke
Abiodun, Oluwakemi E.
Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
title Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
title_full Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
title_fullStr Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
title_full_unstemmed Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
title_short Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
title_sort modified kibria-lukman (mkl) estimator for the poisson regression model: application and simulation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825644/
https://www.ncbi.nlm.nih.gov/pubmed/35186265
http://dx.doi.org/10.12688/f1000research.53987.2
work_keys_str_mv AT aladeitanbenedictab modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation
AT adebimpeolukayode modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation
AT lukmanadewalef modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation
AT oludounolajumoke modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation
AT abiodunoluwakemie modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation