Cargando…
Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literatu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825644/ https://www.ncbi.nlm.nih.gov/pubmed/35186265 http://dx.doi.org/10.12688/f1000research.53987.2 |
_version_ | 1784647265893220352 |
---|---|
author | Aladeitan, Benedicta B. Adebimpe, Olukayode Lukman, Adewale F. Oludoun, Olajumoke Abiodun, Oluwakemi E. |
author_facet | Aladeitan, Benedicta B. Adebimpe, Olukayode Lukman, Adewale F. Oludoun, Olajumoke Abiodun, Oluwakemi E. |
author_sort | Aladeitan, Benedicta B. |
collection | PubMed |
description | Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literature shows that the KL estimator is preferred. Therefore, this study sought to modify the KL estimator to mitigate the Poisson Regression Model with multicollinearity. Methods: A simulation study and a real-life study was carried out and the performance of the new estimator was compared with some of the existing estimators. Results: The simulation result showed the new estimator performed more efficiently than the MLE, Poisson Ridge Regression Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL (PKL) estimators. The real-life application also agreed with the simulation result. Conclusions: In general, the new estimator performed more efficiently than the MLE, PRE, PLE and the PKL when multicollinearity was present. |
format | Online Article Text |
id | pubmed-8825644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-88256442022-02-17 Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation Aladeitan, Benedicta B. Adebimpe, Olukayode Lukman, Adewale F. Oludoun, Olajumoke Abiodun, Oluwakemi E. F1000Res Research Article Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literature shows that the KL estimator is preferred. Therefore, this study sought to modify the KL estimator to mitigate the Poisson Regression Model with multicollinearity. Methods: A simulation study and a real-life study was carried out and the performance of the new estimator was compared with some of the existing estimators. Results: The simulation result showed the new estimator performed more efficiently than the MLE, Poisson Ridge Regression Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL (PKL) estimators. The real-life application also agreed with the simulation result. Conclusions: In general, the new estimator performed more efficiently than the MLE, PRE, PLE and the PKL when multicollinearity was present. F1000 Research Limited 2021-12-14 /pmc/articles/PMC8825644/ /pubmed/35186265 http://dx.doi.org/10.12688/f1000research.53987.2 Text en Copyright: © 2021 Aladeitan BB et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Aladeitan, Benedicta B. Adebimpe, Olukayode Lukman, Adewale F. Oludoun, Olajumoke Abiodun, Oluwakemi E. Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation |
title | Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation |
title_full | Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation |
title_fullStr | Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation |
title_full_unstemmed | Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation |
title_short | Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation |
title_sort | modified kibria-lukman (mkl) estimator for the poisson regression model: application and simulation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825644/ https://www.ncbi.nlm.nih.gov/pubmed/35186265 http://dx.doi.org/10.12688/f1000research.53987.2 |
work_keys_str_mv | AT aladeitanbenedictab modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation AT adebimpeolukayode modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation AT lukmanadewalef modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation AT oludounolajumoke modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation AT abiodunoluwakemie modifiedkibrialukmanmklestimatorforthepoissonregressionmodelapplicationandsimulation |