Cargando…

Directional analysis of intensity changes for determining the existence of cyst in optical coherence tomography images

Diabetic retinopathy (DR) is an important cause of blindness in people with the long history of diabetes. DR is caused due to the damage to blood vessels in the retina. One of the most important manifestations of DR is the formation of fluid-filled regions between retinal layers. The evaluation of s...

Descripción completa

Detalles Bibliográficos
Autores principales: Monemian, Maryam, Rabbani, Hossein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825816/
https://www.ncbi.nlm.nih.gov/pubmed/35136133
http://dx.doi.org/10.1038/s41598-022-06099-6
Descripción
Sumario:Diabetic retinopathy (DR) is an important cause of blindness in people with the long history of diabetes. DR is caused due to the damage to blood vessels in the retina. One of the most important manifestations of DR is the formation of fluid-filled regions between retinal layers. The evaluation of stage and transcribed drugs can be possible through the analysis of retinal Optical Coherence Tomography (OCT) images. Therefore, the detection of cysts in OCT images and the is of considerable importance. In this paper, a fast method is proposed to determine the status of OCT images as cystic or non-cystic. The method consists of three phases which are pre-processing, boundary pixel determination and post-processing. After applying a noise reduction method in the pre-processing step, the method finds the pixels which are the boundary pixels of cysts. This process is performed by finding the significant intensity changes in the vertical direction and considering rectangular patches around the candidate pixels. The patches are verified whether or not they contain enough pixels making considerable diagonal intensity changes. Then, a shadow omission method is proposed in the post-processing phase to extract the shadow regions which can be mistakenly considered as cystic areas. Then, the pixels extracted in the previous phase that are near the shadow regions are removed to prevent the production of false positive cases. The performance of the proposed method is evaluated in terms of sensitivity and specificity on real datasets. The experimental results show that the proposed method produces outstanding results from both accuracy and speed points of view.