Cargando…
Synthetic flow-based cryptomining attack generation through Generative Adversarial Networks
Due to the growing rise of cyber attacks in the Internet, the demand of accurate intrusion detection systems (IDS) to prevent these vulnerabilities is increasing. To this aim, Machine Learning (ML) components have been proposed as an efficient and effective solution. However, its applicability scope...
Autores principales: | Mozo, Alberto, González-Prieto, Ángel, Pastor, Antonio, Gómez-Canaval, Sandra, Talavera, Edgar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825844/ https://www.ncbi.nlm.nih.gov/pubmed/35136144 http://dx.doi.org/10.1038/s41598-022-06057-2 |
Ejemplares similares
-
Generation of synthetic ground glass nodules using generative adversarial networks (GANs)
por: Wang, Zhixiang, et al.
Publicado: (2022) -
Forecasting short-term data center network traffic load with convolutional neural networks
por: Mozo, Alberto, et al.
Publicado: (2018) -
Presentation Attack Face Image Generation Based on a Deep Generative Adversarial Network
por: Nguyen, Dat Tien, et al.
Publicado: (2020) -
B5GEMINI: AI-Driven Network Digital Twin
por: Mozo, Alberto, et al.
Publicado: (2022) -
Unified Generative Adversarial Networks for Multidomain Fingerprint Presentation Attack Detection
por: Sandouka, Soha B., et al.
Publicado: (2021)