Cargando…
CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
MOTIVATION: Single-cell RNA sequencing allows high-resolution views of individual cells for libraries of up to millions of samples, thus motivating the use of deep learning for analysis. In this study, we introduce the use of graph neural networks for the unsupervised exploration of scRNA-seq data b...
Autores principales: | Buterez, David, Bica, Ioana, Tariq, Ifrah, Andrés-Terré, Helena, Liò, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825872/ https://www.ncbi.nlm.nih.gov/pubmed/34864884 http://dx.doi.org/10.1093/bioinformatics/btab804 |
Ejemplares similares
-
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Bica, Ioana, et al.
Publicado: (2020) -
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning
por: Xiong, Zehao, et al.
Publicado: (2023) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023)