Cargando…
Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases
MOTIVATION: Gene expression data are commonly used at the intersection of cancer research and machine learning for better understanding of the molecular status of tumour tissue. Deep learning predictive models have been employed for gene expression data due to their ability to scale and remove the n...
Autores principales: | Scherer, Paul, Trębacz, Maja, Simidjievski, Nikola, Viñas, Ramon, Shams, Zohreh, Terre, Helena Andres, Jamnik, Mateja, Liò, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826027/ https://www.ncbi.nlm.nih.gov/pubmed/34888618 http://dx.doi.org/10.1093/bioinformatics/btab830 |
Ejemplares similares
-
Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice
por: Simidjievski, Nikola, et al.
Publicado: (2019) -
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Bica, Ioana, et al.
Publicado: (2020) -
CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
por: Buterez, David, et al.
Publicado: (2021) -
Graph Representation Forecasting of Patient's Medical Conditions: Toward a Digital Twin
por: Barbiero, Pietro, et al.
Publicado: (2021) -
Adversarial generation of gene expression data
por: Viñas, Ramon, et al.
Publicado: (2021)