Cargando…
Machine Learning Approaches for Predicting Difficult Airway and First-Pass Success in the Emergency Department: Multicenter Prospective Observational Study
BACKGROUND: There is still room for improvement in the modified LEMON (look, evaluate, Mallampati, obstruction, neck mobility) criteria for difficult airway prediction and no prediction tool for first-pass success in the emergency department (ED). OBJECTIVE: We applied modern machine learning approa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826144/ https://www.ncbi.nlm.nih.gov/pubmed/35076398 http://dx.doi.org/10.2196/28366 |
Sumario: | BACKGROUND: There is still room for improvement in the modified LEMON (look, evaluate, Mallampati, obstruction, neck mobility) criteria for difficult airway prediction and no prediction tool for first-pass success in the emergency department (ED). OBJECTIVE: We applied modern machine learning approaches to predict difficult airways and first-pass success. METHODS: In a multicenter prospective study that enrolled consecutive patients who underwent tracheal intubation in 13 EDs, we developed 7 machine learning models (eg, random forest model) using routinely collected data (eg, demographics, initial airway assessment). The outcomes were difficult airway and first-pass success. Model performance was evaluated using c-statistics, calibration slopes, and association measures (eg, sensitivity) in the test set (randomly selected 20% of the data). Their performance was compared with the modified LEMON criteria for difficult airway success and a logistic regression model for first-pass success. RESULTS: Of 10,741 patients who underwent intubation, 543 patients (5.1%) had a difficult airway, and 7690 patients (71.6%) had first-pass success. In predicting a difficult airway, machine learning models—except for k-point nearest neighbor and multilayer perceptron—had higher discrimination ability than the modified LEMON criteria (all, P≤.001). For example, the ensemble method had the highest c-statistic (0.74 vs 0.62 with the modified LEMON criteria; P<.001). Machine learning models—except k-point nearest neighbor and random forest models—had higher discrimination ability for first-pass success. In particular, the ensemble model had the highest c-statistic (0.81 vs 0.76 with the reference regression; P<.001). CONCLUSIONS: Machine learning models demonstrated greater ability for predicting difficult airway and first-pass success in the ED. |
---|