Cargando…

Two-Stage Hybrid Approach of Deep Learning Networks for Interstitial Lung Disease Classification

High-resolution computed tomography (HRCT) images in interstitial lung disease (ILD) screening can help improve healthcare quality. However, most of the earlier ILD classification work involves time-consuming manual identification of the region of interest (ROI) from the lung HRCT image before apply...

Descripción completa

Detalles Bibliográficos
Autores principales: Pawar, Swati P., Talbar, Sanjay N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826206/
https://www.ncbi.nlm.nih.gov/pubmed/35155680
http://dx.doi.org/10.1155/2022/7340902
Descripción
Sumario:High-resolution computed tomography (HRCT) images in interstitial lung disease (ILD) screening can help improve healthcare quality. However, most of the earlier ILD classification work involves time-consuming manual identification of the region of interest (ROI) from the lung HRCT image before applying the deep learning classification algorithm. This paper has developed a two-stage hybrid approach of deep learning networks for ILD classification. A conditional generative adversarial network (c-GAN) has segmented the lung part from the HRCT images at the first stage. The c-GAN with multiscale feature extraction module has been used for accurate lung segmentation from the HRCT images with lung abnormalities. At the second stage, a pretrained ResNet50 has been used to extract the features from the segmented lung image for classification into six ILD classes using the support vector machine classifier. The proposed two-stage algorithm takes a whole HRCT as input eliminating the need for extracting the ROI and classifies the given HRCT image into an ILD class. The performance of the proposed two-stage deep learning network-based ILD classifier has improved considerably due to the stage-wise improvement of deep learning algorithm performance.