Cargando…
ADA-COVID: Adversarial Deep Domain Adaptation-Based Diagnosis of COVID-19 from Lung CT Scans Using Triplet Embeddings
Rapid diagnosis of COVID-19 with high reliability is essential in the early stages. To this end, recent research often uses medical imaging combined with machine vision methods to diagnose COVID-19. However, the scarcity of medical images and the inherent differences in existing datasets that arise...
Autores principales: | Aria, Mehrad, Nourani, Esmaeil, Golzari Oskouei, Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826267/ https://www.ncbi.nlm.nih.gov/pubmed/35154300 http://dx.doi.org/10.1155/2022/2564022 |
Ejemplares similares
-
AdaDiag: Adversarial Domain Adaptation of Diagnostic Prediction with Clinical Event Sequences
por: Zhang, Tianran, et al.
Publicado: (2022) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022) -
Simultaneously Improve Transferability and Discriminability for Adversarial Domain Adaptation
por: Xiao, Ting, et al.
Publicado: (2021)