Cargando…
Combining Genetic Mutation and Expression Profiles Identifies Novel Prognostic Biomarkers of Lung Adenocarcinoma
MOTIVATION: Although several prognostic signatures for lung adenocarcinoma (LUAD) have been developed, they are mainly based on a single-omics data set. This article aims to develop a novel set of prognostic signatures by combining genetic mutation and expression profiles of LUAD patients. METHODS:...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826273/ https://www.ncbi.nlm.nih.gov/pubmed/35153523 http://dx.doi.org/10.1177/1179554920966260 |
_version_ | 1784647398253920256 |
---|---|
author | Liu, Yun Liu, Fu Hu, Xintong He, Jiaxue Jiang, Yanfang |
author_facet | Liu, Yun Liu, Fu Hu, Xintong He, Jiaxue Jiang, Yanfang |
author_sort | Liu, Yun |
collection | PubMed |
description | MOTIVATION: Although several prognostic signatures for lung adenocarcinoma (LUAD) have been developed, they are mainly based on a single-omics data set. This article aims to develop a novel set of prognostic signatures by combining genetic mutation and expression profiles of LUAD patients. METHODS: The genetic mutation and expression profiles, together with the clinical profiles of a cohort of LUAD patients from The Cancer Genome Atlas (TCGA), were downloaded. Patients were separated into 2 groups, namely, the high-risk and low-risk groups, according to their overall survivals. Then, differential analysis was performed to determine differentially expressed genes (DEGs) and mutated genes (DMGs) in the expression and mutation profiles, respectively, between the 2 groups. Finally, a prognostic model based on the support vector machine (SVM) algorithm was developed by combining the expression values of the DEGs and the mutation times of the DMGs. RESULTS: A total of 13 DEGs and 7 DMGs were recognized between the 2 groups. Their prognostic values were validated using independent cohorts. Compared with several existing signatures, the proposed prognostic signatures exhibited better prediction performance in the testing set. In addition, it is found that 1 of the 7 DMGs, GRIN2B, is mutated much more frequently in the high-risk group, showing a potential value as a therapy target. CONCLUSIONS: Combining multi-omics data sets is an applicable manner to identify novel prognostic signatures and to improve the prognostic prediction for LUAD, which will be heuristic to other types of cancers. |
format | Online Article Text |
id | pubmed-8826273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-88262732022-02-10 Combining Genetic Mutation and Expression Profiles Identifies Novel Prognostic Biomarkers of Lung Adenocarcinoma Liu, Yun Liu, Fu Hu, Xintong He, Jiaxue Jiang, Yanfang Clin Med Insights Oncol Original Research MOTIVATION: Although several prognostic signatures for lung adenocarcinoma (LUAD) have been developed, they are mainly based on a single-omics data set. This article aims to develop a novel set of prognostic signatures by combining genetic mutation and expression profiles of LUAD patients. METHODS: The genetic mutation and expression profiles, together with the clinical profiles of a cohort of LUAD patients from The Cancer Genome Atlas (TCGA), were downloaded. Patients were separated into 2 groups, namely, the high-risk and low-risk groups, according to their overall survivals. Then, differential analysis was performed to determine differentially expressed genes (DEGs) and mutated genes (DMGs) in the expression and mutation profiles, respectively, between the 2 groups. Finally, a prognostic model based on the support vector machine (SVM) algorithm was developed by combining the expression values of the DEGs and the mutation times of the DMGs. RESULTS: A total of 13 DEGs and 7 DMGs were recognized between the 2 groups. Their prognostic values were validated using independent cohorts. Compared with several existing signatures, the proposed prognostic signatures exhibited better prediction performance in the testing set. In addition, it is found that 1 of the 7 DMGs, GRIN2B, is mutated much more frequently in the high-risk group, showing a potential value as a therapy target. CONCLUSIONS: Combining multi-omics data sets is an applicable manner to identify novel prognostic signatures and to improve the prognostic prediction for LUAD, which will be heuristic to other types of cancers. SAGE Publications 2020-10-28 /pmc/articles/PMC8826273/ /pubmed/35153523 http://dx.doi.org/10.1177/1179554920966260 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Liu, Yun Liu, Fu Hu, Xintong He, Jiaxue Jiang, Yanfang Combining Genetic Mutation and Expression Profiles Identifies Novel Prognostic Biomarkers of Lung Adenocarcinoma |
title | Combining Genetic Mutation and Expression Profiles Identifies Novel
Prognostic Biomarkers of Lung Adenocarcinoma |
title_full | Combining Genetic Mutation and Expression Profiles Identifies Novel
Prognostic Biomarkers of Lung Adenocarcinoma |
title_fullStr | Combining Genetic Mutation and Expression Profiles Identifies Novel
Prognostic Biomarkers of Lung Adenocarcinoma |
title_full_unstemmed | Combining Genetic Mutation and Expression Profiles Identifies Novel
Prognostic Biomarkers of Lung Adenocarcinoma |
title_short | Combining Genetic Mutation and Expression Profiles Identifies Novel
Prognostic Biomarkers of Lung Adenocarcinoma |
title_sort | combining genetic mutation and expression profiles identifies novel
prognostic biomarkers of lung adenocarcinoma |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826273/ https://www.ncbi.nlm.nih.gov/pubmed/35153523 http://dx.doi.org/10.1177/1179554920966260 |
work_keys_str_mv | AT liuyun combininggeneticmutationandexpressionprofilesidentifiesnovelprognosticbiomarkersoflungadenocarcinoma AT liufu combininggeneticmutationandexpressionprofilesidentifiesnovelprognosticbiomarkersoflungadenocarcinoma AT huxintong combininggeneticmutationandexpressionprofilesidentifiesnovelprognosticbiomarkersoflungadenocarcinoma AT hejiaxue combininggeneticmutationandexpressionprofilesidentifiesnovelprognosticbiomarkersoflungadenocarcinoma AT jiangyanfang combininggeneticmutationandexpressionprofilesidentifiesnovelprognosticbiomarkersoflungadenocarcinoma |