Cargando…
Uncertainty quantification for Bayesian active learning in rupture life prediction of ferritic steels
Three probabilistic methodologies are developed for predicting the long-term creep rupture life of 9–12 wt%Cr ferritic-martensitic steels using their chemical and processing parameters. The framework developed in this research strives to simultaneously make efficient inference along with associated...
Autores principales: | Mamun, Osman, Taufique, M. F. N., Wenzlick, Madison, Hawk, Jeffrey, Devanathan, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826314/ https://www.ncbi.nlm.nih.gov/pubmed/35136127 http://dx.doi.org/10.1038/s41598-022-06051-8 |
Ejemplares similares
-
A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
por: Mamun, Osman, et al.
Publicado: (2021) -
Bayesian uncertainty quantification for data-driven equation learning
por: Martina-Perez, Simon, et al.
Publicado: (2021) -
Weldability of ferritic steels
por: Bailey, Norman
Publicado: (1994) -
On the Quantification of Model Uncertainty: A Bayesian Perspective
por: Kaplan, David
Publicado: (2021) -
Uncertainty quantification of dynamic earthquake rupture simulations
por: Daub, Eric G., et al.
Publicado: (2021)