Cargando…
Isoform-level quantification for single-cell RNA sequencing
MOTIVATION: RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput...
Autores principales: | Pan, Lu, Dinh, Huy Q, Pawitan, Yudi, Vu, Trung Nghia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826380/ https://www.ncbi.nlm.nih.gov/pubmed/34864849 http://dx.doi.org/10.1093/bioinformatics/btab807 |
Ejemplares similares
-
Quantification of mutant–allele expression at isoform level in cancer from RNA-seq data
por: Deng, Wenjiang, et al.
Publicado: (2022) -
Isoform-level gene expression patterns in single-cell RNA-sequencing data
por: Vu, Trung Nghia, et al.
Publicado: (2018) -
Alternating EM algorithm for a bilinear model in isoform quantification from RNA-seq data
por: Deng, Wenjiang, et al.
Publicado: (2019) -
Cell-level somatic mutation detection from single-cell RNA sequencing
por: Vu, Trung Nghia, et al.
Publicado: (2019) -
Reproducibility of Methods to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing
por: Mou, Tian, et al.
Publicado: (2020)