Cargando…
DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data
MOTIVATION: DNA methylation plays a key role in a variety of biological processes. Recently, Nanopore long-read sequencing has enabled direct detection of these modifications. As a consequence, a range of computational methods have been developed to exploit Nanopore data for methylation detection. H...
Autores principales: | Bonet, Jose, Chen, Mandi, Dabad, Marc, Heath, Simon, Gonzalez-Perez, Abel, Lopez-Bigas, Nuria, Lagergren, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826383/ https://www.ncbi.nlm.nih.gov/pubmed/34718417 http://dx.doi.org/10.1093/bioinformatics/btab745 |
Ejemplares similares
-
DeepSimulator: a deep simulator for Nanopore sequencing
por: Li, Yu, et al.
Publicado: (2018) -
BnpC: Bayesian non-parametric clustering of single-cell mutation profiles
por: Borgsmüller, Nico, et al.
Publicado: (2020) -
DextMP: deep dive into text for predicting moonlighting proteins
por: Khan, Ishita K, et al.
Publicado: (2017) -
Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data
por: Liu, Qian, et al.
Publicado: (2019) -
Functional impact bias reveals cancer drivers
por: Gonzalez-Perez, Abel, et al.
Publicado: (2012)