Cargando…
Trigonal multivalent polonium monolayers with intrinsic quantum spin Hall effects
Two-dimensional (2D) topological insulators, a type of the extraordinary quantum electronic states, have attracted considerable interest due to their unique electronic properties and promising potential applications. Recently, the successful fabrication of 2D Te monolayers (i.e. tellurene) in experi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826415/ https://www.ncbi.nlm.nih.gov/pubmed/35136163 http://dx.doi.org/10.1038/s41598-022-06242-3 |
Sumario: | Two-dimensional (2D) topological insulators, a type of the extraordinary quantum electronic states, have attracted considerable interest due to their unique electronic properties and promising potential applications. Recently, the successful fabrication of 2D Te monolayers (i.e. tellurene) in experiments (Zhu et al., Phys Rev Lett 119:106101, 2017) has promoted researches on the group-VI monolayer materials. With first-principles calculations and tight-binding (TB) method, we investigate the structures and electronic states of 2D polonium (poloniumene), in which Po is a congener of Te. The poloniumene is found to have the tendency of forming a three-atomic-layer 1 T-MoS(2)-like structure (called trigonal poloniumene), namely, the central-layer Po atoms behave metal-like, while the two-outer-layer Po atoms are semiconductor-like. This unique multivalent behavior of the Po atoms is conducive to the structural stability of the monolayer, which is found to be an intrinsic quantum spin Hall insulator with a large band gap. The nontrivial topology originates from the [Formula: see text] band inversion, which can be understood based on a built TB model. The poloniumene with different congener elements doped is also explored. Our results provide a thorough understanding of structures and electronic states of 2D polonium-related materials. |
---|