Cargando…
Protein sequence design with a learned potential
The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein b...
Autores principales: | Anand, Namrata, Eguchi, Raphael, Mathews, Irimpan I., Perez, Carla P., Derry, Alexander, Altman, Russ B., Huang, Po-Ssu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826426/ https://www.ncbi.nlm.nih.gov/pubmed/35136054 http://dx.doi.org/10.1038/s41467-022-28313-9 |
Ejemplares similares
-
COLLAPSE: A representation learning framework for identification and characterization of protein structural sites
por: Derry, Alexander, et al.
Publicado: (2023) -
Explainable protein function annotation using local structure embeddings
por: Derry, Alexander, et al.
Publicado: (2023) -
De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design
por: Chu, Alexander E., et al.
Publicado: (2022) -
Training data composition affects performance of protein structure analysis algorithms
por: Derry, Alexander, et al.
Publicado: (2022) -
Ig-VAE: Generative modeling of protein structure by direct 3D coordinate generation
por: Eguchi, Raphael R., et al.
Publicado: (2022)