Cargando…
Effect of Bayesian penalty likelihood algorithm on 18F-FDG PET/CT image of lymphoma
Recently, a new Bayesian penalty likelihood (BPL) reconstruction algorithm has been applied in PET, which is expected to provide better image resolution than the widely used ordered subset expectation maximization (OSEM). The purpose of this study is to compare the differences between these two algo...
Autores principales: | Wang, Yongtao, Lin, Lejun, Quan, Wei, Li, Jinyu, Li, Weilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826614/ https://www.ncbi.nlm.nih.gov/pubmed/34864809 http://dx.doi.org/10.1097/MNM.0000000000001516 |
Ejemplares similares
-
Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical (18)F-FDG PET/CT
por: te Riet, Joost, et al.
Publicado: (2019) -
Changes of [(18)F]FDG-PET/CT quantitative parameters in tumor lesions by the Bayesian penalized-likelihood PET reconstruction algorithm and its influencing factors
por: Liu, Yao, et al.
Publicado: (2021) -
Small lesion depiction and quantification accuracy of oncological (18)F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction
por: Xu, Lei, et al.
Publicado: (2022) -
Impact of Bayesian penalized likelihood reconstruction on quantitative and qualitative aspects for pulmonary nodule detection in digital 2-[(18)F]FDG-PET/CT
por: Lohaus, Niklas, et al.
Publicado: (2022) -
Impact of the Noise Penalty Factor on Quantification in Bayesian Penalized Likelihood (Q.Clear) Reconstructions of (68)Ga-PSMA PET/CT Scans
por: Rijnsdorp, Sjoerd, et al.
Publicado: (2021)