Cargando…
Integrating morphologic and molecular histopathological features through whole slide image registration and deep learning
BACKGROUND: Modern molecular pathology workflows in neuro-oncology heavily rely on the integration of morphologic and immunohistochemical patterns for analysis, classification, and prognostication. However, despite the recent emergence of digital pathology platforms and artificial intelligence-drive...
Autores principales: | Faust, Kevin, Lee, Michael K, Dent, Anglin, Fiala, Clare, Portante, Alessia, Rabindranath, Madhumitha, Alsafwani, Noor, Gao, Andrew, Djuric, Ugljesa, Diamandis, Phedias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826810/ https://www.ncbi.nlm.nih.gov/pubmed/35156037 http://dx.doi.org/10.1093/noajnl/vdac001 |
Ejemplares similares
-
Physician perspectives on integration of artificial intelligence into diagnostic pathology
por: Sarwar, Shihab, et al.
Publicado: (2019) -
Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction
por: Faust, Kevin, et al.
Publicado: (2018) -
Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care
por: Djuric, Ugljesa, et al.
Publicado: (2017) -
Consumer-grade electroencephalography devices as potential tools for early detection of brain tumors
por: Samuel, Nardin, et al.
Publicado: (2021) -
Unifying models of glioblastoma’s intratumoral heterogeneity
por: Lam, K H Brian, et al.
Publicado: (2020)