Cargando…
COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment–Based Topic Modeling
BACKGROUND: COVID-19 vaccines are one of the most effective preventive strategies for containing the pandemic. Having a better understanding of the public’s conceptions of COVID-19 vaccines may aid in the effort to promptly and thoroughly vaccinate the community. However, because no empirical resear...
Autores principales: | Huangfu, Luwen, Mo, Yiwen, Zhang, Peijie, Zeng, Daniel Dajun, He, Saike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827037/ https://www.ncbi.nlm.nih.gov/pubmed/34783665 http://dx.doi.org/10.2196/31726 |
Ejemplares similares
-
Correction: COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment–Based Topic Modeling
por: Huangfu, Luwen, et al.
Publicado: (2022) -
Sentiment analysis and causal learning of COVID-19 tweets prior to the rollout of vaccines
por: Zhang, Qihuang, et al.
Publicado: (2023) -
Social-Cyber Maneuvers During the COVID-19 Vaccine Initial Rollout: Content Analysis of Tweets
por: Blane, Janice T, et al.
Publicado: (2022) -
Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis
por: Kwok, Stephen Wai Hang, et al.
Publicado: (2021) -
Public Officials’ Engagement on Social Media During the Rollout of the COVID-19 Vaccine: Content Analysis of Tweets
por: Marani, Husayn, et al.
Publicado: (2023)