Cargando…
A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project
BACKGROUND: Individual diet components and specific dietary regimens have been shown to impact the gut microbiome. OBJECTIVES: Here, we explored the contribution of long-term diet by searching for dietary patterns that would best associate with the gut microbiome in a population-based cohort. METHOD...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827078/ https://www.ncbi.nlm.nih.gov/pubmed/34617562 http://dx.doi.org/10.1093/ajcn/nqab332 |
_version_ | 1784647556388618240 |
---|---|
author | Cotillard, Aurélie Cartier-Meheust, Agnès Litwin, Nicole S Chaumont, Soline Saccareau, Mathilde Lejzerowicz, Franck Tap, Julien Koutnikova, Hana Lopez, Diana Gutierrez McDonald, Daniel Song, Se Jin Knight, Rob Derrien, Muriel Veiga, Patrick |
author_facet | Cotillard, Aurélie Cartier-Meheust, Agnès Litwin, Nicole S Chaumont, Soline Saccareau, Mathilde Lejzerowicz, Franck Tap, Julien Koutnikova, Hana Lopez, Diana Gutierrez McDonald, Daniel Song, Se Jin Knight, Rob Derrien, Muriel Veiga, Patrick |
author_sort | Cotillard, Aurélie |
collection | PubMed |
description | BACKGROUND: Individual diet components and specific dietary regimens have been shown to impact the gut microbiome. OBJECTIVES: Here, we explored the contribution of long-term diet by searching for dietary patterns that would best associate with the gut microbiome in a population-based cohort. METHODS: Using a priori and a posteriori approaches, we constructed dietary patterns from an FFQ completed by 1800 adults in the American Gut Project. Dietary patterns were defined as groups of participants or combinations of food variables (factors) driven by criteria ranging from individual nutrients to overall diet. We associated these patterns with 16S ribosomal RNA–based gut microbiome data for a subset of 744 participants. RESULTS: Compared to individual features (e.g., fiber and protein), or to factors representing a reduced number of dietary features, 5 a posteriori dietary patterns based on food groups were best associated with gut microbiome beta diversity (P ≤ 0.0002). Two patterns followed Prudent-like diets—Plant-Based and Flexitarian—and exhibited the highest Healthy Eating Index 2010 (HEI-2010) scores. Two other patterns presented Western-like diets with a gradient in HEI-2010 scores. A fifth pattern consisted mostly of participants following an Exclusion diet (e.g., low carbohydrate). Notably, gut microbiome alpha diversity was significantly lower in the most Western pattern compared to the Flexitarian pattern (P ≤ 0.009), and the Exclusion diet pattern was associated with low relative abundance of Bifidobacterium (P ≤ 1.2 × 10(–7)), which was better explained by diet than health status. CONCLUSIONS: We demonstrated that global-diet a posteriori patterns were more associated with gut microbiome variations than individual dietary features among adults in the United States. These results confirm that evaluating diet as a whole is important when studying the gut microbiome. It will also facilitate the design of more personalized dietary strategies in general populations. |
format | Online Article Text |
id | pubmed-8827078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88270782022-02-10 A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project Cotillard, Aurélie Cartier-Meheust, Agnès Litwin, Nicole S Chaumont, Soline Saccareau, Mathilde Lejzerowicz, Franck Tap, Julien Koutnikova, Hana Lopez, Diana Gutierrez McDonald, Daniel Song, Se Jin Knight, Rob Derrien, Muriel Veiga, Patrick Am J Clin Nutr Original Research Communications BACKGROUND: Individual diet components and specific dietary regimens have been shown to impact the gut microbiome. OBJECTIVES: Here, we explored the contribution of long-term diet by searching for dietary patterns that would best associate with the gut microbiome in a population-based cohort. METHODS: Using a priori and a posteriori approaches, we constructed dietary patterns from an FFQ completed by 1800 adults in the American Gut Project. Dietary patterns were defined as groups of participants or combinations of food variables (factors) driven by criteria ranging from individual nutrients to overall diet. We associated these patterns with 16S ribosomal RNA–based gut microbiome data for a subset of 744 participants. RESULTS: Compared to individual features (e.g., fiber and protein), or to factors representing a reduced number of dietary features, 5 a posteriori dietary patterns based on food groups were best associated with gut microbiome beta diversity (P ≤ 0.0002). Two patterns followed Prudent-like diets—Plant-Based and Flexitarian—and exhibited the highest Healthy Eating Index 2010 (HEI-2010) scores. Two other patterns presented Western-like diets with a gradient in HEI-2010 scores. A fifth pattern consisted mostly of participants following an Exclusion diet (e.g., low carbohydrate). Notably, gut microbiome alpha diversity was significantly lower in the most Western pattern compared to the Flexitarian pattern (P ≤ 0.009), and the Exclusion diet pattern was associated with low relative abundance of Bifidobacterium (P ≤ 1.2 × 10(–7)), which was better explained by diet than health status. CONCLUSIONS: We demonstrated that global-diet a posteriori patterns were more associated with gut microbiome variations than individual dietary features among adults in the United States. These results confirm that evaluating diet as a whole is important when studying the gut microbiome. It will also facilitate the design of more personalized dietary strategies in general populations. Oxford University Press 2021-10-07 /pmc/articles/PMC8827078/ /pubmed/34617562 http://dx.doi.org/10.1093/ajcn/nqab332 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Research Communications Cotillard, Aurélie Cartier-Meheust, Agnès Litwin, Nicole S Chaumont, Soline Saccareau, Mathilde Lejzerowicz, Franck Tap, Julien Koutnikova, Hana Lopez, Diana Gutierrez McDonald, Daniel Song, Se Jin Knight, Rob Derrien, Muriel Veiga, Patrick A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project |
title | A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project |
title_full | A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project |
title_fullStr | A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project |
title_full_unstemmed | A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project |
title_short | A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project |
title_sort | posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the american gut project |
topic | Original Research Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827078/ https://www.ncbi.nlm.nih.gov/pubmed/34617562 http://dx.doi.org/10.1093/ajcn/nqab332 |
work_keys_str_mv | AT cotillardaurelie aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT cartiermeheustagnes aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT litwinnicoles aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT chaumontsoline aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT saccareaumathilde aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT lejzerowiczfranck aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT tapjulien aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT koutnikovahana aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT lopezdianagutierrez aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT mcdonalddaniel aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT songsejin aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT knightrob aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT derrienmuriel aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT veigapatrick aposterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT cotillardaurelie posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT cartiermeheustagnes posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT litwinnicoles posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT chaumontsoline posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT saccareaumathilde posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT lejzerowiczfranck posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT tapjulien posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT koutnikovahana posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT lopezdianagutierrez posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT mcdonalddaniel posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT songsejin posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT knightrob posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT derrienmuriel posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject AT veigapatrick posterioridietarypatternsbetterexplainvariationsofthegutmicrobiomethanindividualmarkersintheamericangutproject |