Cargando…
Class imbalance learning with Bayesian optimization applied in drug discovery
Machine intelligence (MI), including machine learning and deep learning, have been regarded as promising methods to reduce the prohibitively high cost of drug development. However, a dilemma within MI has limited its wide application: machine learning models are easier to interpret but yield worse p...
Autores principales: | Guan, Shenmin, Fu, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827090/ https://www.ncbi.nlm.nih.gov/pubmed/35136094 http://dx.doi.org/10.1038/s41598-022-05717-7 |
Ejemplares similares
-
Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection
por: Seo, Jae-Hyun, et al.
Publicado: (2018) -
Drug-target interaction prediction via class imbalance-aware ensemble learning
por: Ezzat, Ali, et al.
Publicado: (2016) -
Relative Density-Based Intuitionistic Fuzzy SVM for Class Imbalance Learning
por: Fu, Cui, et al.
Publicado: (2022) -
Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery
por: Lipinski, Celio F., et al.
Publicado: (2019) -
Bayesian optimal discovery procedure for simultaneous significance testing
por: Cao, Jing, et al.
Publicado: (2009)