Cargando…
Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates
Multi-resonant thermally activated delayed fluorescence (MR-TADF) materials have attracted considerable attention recently. The molecular design frequently incorporates cycloboration. However, to the best of our knowledge MR-TADF compounds containing nitrogen chelated to boron are still unknown. Rep...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827120/ https://www.ncbi.nlm.nih.gov/pubmed/35282615 http://dx.doi.org/10.1039/d1sc05692a |
_version_ | 1784647563527323648 |
---|---|
author | Meng, Guoyun Liu, Lijie He, Zhechang Hall, David Wang, Xiang Peng, Tai Yin, Xiaodong Chen, Pangkuan Beljonne, David Olivier, Yoann Zysman-Colman, Eli Wang, Nan Wang, Suning |
author_facet | Meng, Guoyun Liu, Lijie He, Zhechang Hall, David Wang, Xiang Peng, Tai Yin, Xiaodong Chen, Pangkuan Beljonne, David Olivier, Yoann Zysman-Colman, Eli Wang, Nan Wang, Suning |
author_sort | Meng, Guoyun |
collection | PubMed |
description | Multi-resonant thermally activated delayed fluorescence (MR-TADF) materials have attracted considerable attention recently. The molecular design frequently incorporates cycloboration. However, to the best of our knowledge MR-TADF compounds containing nitrogen chelated to boron are still unknown. Reported herein is a new class of tetracoordinate boron-containing MR-TADF emitters bearing C^N^C- and N^N^N-chelating ligands. We demonstrate that the replacement of the B–C covalent bond in the C^N^C-chelating ligand by the B–N covalent bond affords an isomer, which dramatically influences the optoelectronic properties of the molecule. The resulting N^N^N-chelating compounds show bathochromically shifted absorption and emission spectra relative to C^N^C-chelating compounds. The incorporation of a tert-butylcarbazole group at the 4-position of the pyridine significantly enhances both the thermal stability and the reverse intersystem crossing rate, yet has a negligible effect on emission properties. Consequently, high-performance hyperfluorescent organic light-emitting diodes (HF-OLEDs) that utilize these molecules as green and yellow-green emitters show a maximum external quantum efficiency (η(ext)) of 11.5% and 25.1%, and a suppressed efficiency roll-off with an η(ext) of 10.2% and 18.7% at a luminance of 1000 cd m(−2), respectively. |
format | Online Article Text |
id | pubmed-8827120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-88271202022-03-11 Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates Meng, Guoyun Liu, Lijie He, Zhechang Hall, David Wang, Xiang Peng, Tai Yin, Xiaodong Chen, Pangkuan Beljonne, David Olivier, Yoann Zysman-Colman, Eli Wang, Nan Wang, Suning Chem Sci Chemistry Multi-resonant thermally activated delayed fluorescence (MR-TADF) materials have attracted considerable attention recently. The molecular design frequently incorporates cycloboration. However, to the best of our knowledge MR-TADF compounds containing nitrogen chelated to boron are still unknown. Reported herein is a new class of tetracoordinate boron-containing MR-TADF emitters bearing C^N^C- and N^N^N-chelating ligands. We demonstrate that the replacement of the B–C covalent bond in the C^N^C-chelating ligand by the B–N covalent bond affords an isomer, which dramatically influences the optoelectronic properties of the molecule. The resulting N^N^N-chelating compounds show bathochromically shifted absorption and emission spectra relative to C^N^C-chelating compounds. The incorporation of a tert-butylcarbazole group at the 4-position of the pyridine significantly enhances both the thermal stability and the reverse intersystem crossing rate, yet has a negligible effect on emission properties. Consequently, high-performance hyperfluorescent organic light-emitting diodes (HF-OLEDs) that utilize these molecules as green and yellow-green emitters show a maximum external quantum efficiency (η(ext)) of 11.5% and 25.1%, and a suppressed efficiency roll-off with an η(ext) of 10.2% and 18.7% at a luminance of 1000 cd m(−2), respectively. The Royal Society of Chemistry 2022-01-04 /pmc/articles/PMC8827120/ /pubmed/35282615 http://dx.doi.org/10.1039/d1sc05692a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Meng, Guoyun Liu, Lijie He, Zhechang Hall, David Wang, Xiang Peng, Tai Yin, Xiaodong Chen, Pangkuan Beljonne, David Olivier, Yoann Zysman-Colman, Eli Wang, Nan Wang, Suning Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates |
title | Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates |
title_full | Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates |
title_fullStr | Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates |
title_full_unstemmed | Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates |
title_short | Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates |
title_sort | multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing pahs: colour tuning based on the nature of chelates |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827120/ https://www.ncbi.nlm.nih.gov/pubmed/35282615 http://dx.doi.org/10.1039/d1sc05692a |
work_keys_str_mv | AT mengguoyun multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT liulijie multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT hezhechang multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT halldavid multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT wangxiang multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT pengtai multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT yinxiaodong multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT chenpangkuan multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT beljonnedavid multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT olivieryoann multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT zysmancolmaneli multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT wangnan multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates AT wangsuning multiresonantthermallyactivateddelayedfluorescenceemittersbasedontetracoordinateboroncontainingpahscolourtuningbasedonthenatureofchelates |