Cargando…
Translates of rational points along expanding closed horocycles on the modular surface
We study the limiting distribution of the rational points under a horizontal translation along a sequence of expanding closed horocycles on the modular surface. Using spectral methods we confirm equidistribution of these sample points for any translate when the sequence of horocycles expands within...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827300/ https://www.ncbi.nlm.nih.gov/pubmed/35221379 http://dx.doi.org/10.1007/s00208-021-02267-7 |
Sumario: | We study the limiting distribution of the rational points under a horizontal translation along a sequence of expanding closed horocycles on the modular surface. Using spectral methods we confirm equidistribution of these sample points for any translate when the sequence of horocycles expands within a certain polynomial range. We show that the equidistribution fails for generic translates and a slightly faster expanding rate. We also prove both equidistribution and non-equidistribution results by obtaining explicit limiting measures while allowing the sequence of horocycles to expand arbitrarily fast. Similar results are also obtained for translates of primitive rational points. |
---|