Cargando…

Spinal alignment shift between supine and prone CT imaging occurs frequently and regardless of the anatomic region, risk factors, or pathology

Computer-assisted spine surgery based on preoperative CT imaging may be hampered by sagittal alignment shifts due to an intraoperative switch from supine to prone. In the present study, we systematically analyzed the occurrence and pattern of sagittal spinal alignment shift between corresponding pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Wessels, Lars, Komm, Bettina, Bohner, Georg, Vajkoczy, Peter, Hecht, Nils
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827393/
https://www.ncbi.nlm.nih.gov/pubmed/34379226
http://dx.doi.org/10.1007/s10143-021-01618-x
Descripción
Sumario:Computer-assisted spine surgery based on preoperative CT imaging may be hampered by sagittal alignment shifts due to an intraoperative switch from supine to prone. In the present study, we systematically analyzed the occurrence and pattern of sagittal spinal alignment shift between corresponding preoperative (supine) and intraoperative (prone) CT imaging in patients that underwent navigated posterior instrumentation between 2014 and 2017. Sagittal alignment across the levels of instrumentation was determined according to the C2 fracture gap (C2-F) and C2 translation (C2-T) in odontoid type 2 fractures, next to the modified Cobb angle (CA), plumbline (PL), and translation (T) in subaxial pathologies. One-hundred and twenty-one patients (C1/C2: n = 17; C3-S1: n = 104) with degenerative (39/121; 32%), oncologic (35/121; 29%), traumatic (34/121; 28%), or infectious (13/121; 11%) pathologies were identified. In the subaxial spine, significant shift occurred in 104/104 (100%) cases (CA: *p = .044; T: *p = .021) compared to only 10/17 (59%) cases that exhibited shift at the C1/C2 level (C2-F: **p = .002; C2-T: *p < .016). The degree of shift was not affected by the anatomic region or pathology but significantly greater in cases with an instrumentation length > 5 segments (“∆PL > 5 segments”: 4.5 ± 1.8 mm; “∆PL ≤ 5 segments”: 2 ± 0.6 mm; *p = .013) or in revision surgery with pre-existing instrumentation (“∆PL presence”: 5 ± 2.6 mm; “∆PL absence”: 2.4 ± 0.7 mm; **p = .007). Interestingly, typical morphological instability risk factors did not influence the degree of shift. In conclusion, intraoperative spinal alignment shift due to a change in patient position should be considered as a cause for inaccuracy during computer-assisted spine surgery and when correcting spinal alignment according to parameters that were planned in other patient positions.