Cargando…

Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles

We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function...

Descripción completa

Detalles Bibliográficos
Autores principales: Abudinén, F., Bertemes, M., Bilokin, S., Campajola, M., Casarosa, G., Cunliffe, S., Corona, L., De Nuccio, M., De Pietro, G., Dey, S., Eliachevitch, M., Feichtinger, P., Ferber, T., Gemmler, J., Goldenzweig, P., Gottmann, A., Graziani, E., Haigh, H., Hohmann, M., Humair, T., Inguglia, G., Kahn, J., Keck, T., Komarov, I., Krohn, J.-F., Kuhr, T., Lacaprara, S., Lieret, K., Maiti, R., Martini, A., Meier, F., Metzner, F., Milesi, M., Park, S.-H., Prim, M., Pulvermacher, C., Ritter, M., Sato, Y., Schwanda, C., Sutcliffe, W., Tamponi, U., Tenchini, F., Urquijo, P., Zani, L., Žlebčík, R., Zupanc, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827400/
https://www.ncbi.nlm.nih.gov/pubmed/35210938
http://dx.doi.org/10.1140/epjc/s10052-022-10070-0
Descripción
Sumario:We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.