Cargando…

Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles

We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function...

Descripción completa

Detalles Bibliográficos
Autores principales: Abudinén, F., Bertemes, M., Bilokin, S., Campajola, M., Casarosa, G., Cunliffe, S., Corona, L., De Nuccio, M., De Pietro, G., Dey, S., Eliachevitch, M., Feichtinger, P., Ferber, T., Gemmler, J., Goldenzweig, P., Gottmann, A., Graziani, E., Haigh, H., Hohmann, M., Humair, T., Inguglia, G., Kahn, J., Keck, T., Komarov, I., Krohn, J.-F., Kuhr, T., Lacaprara, S., Lieret, K., Maiti, R., Martini, A., Meier, F., Metzner, F., Milesi, M., Park, S.-H., Prim, M., Pulvermacher, C., Ritter, M., Sato, Y., Schwanda, C., Sutcliffe, W., Tamponi, U., Tenchini, F., Urquijo, P., Zani, L., Žlebčík, R., Zupanc, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827400/
https://www.ncbi.nlm.nih.gov/pubmed/35210938
http://dx.doi.org/10.1140/epjc/s10052-022-10070-0
_version_ 1784647619633479680
author Abudinén, F.
Bertemes, M.
Bilokin, S.
Campajola, M.
Casarosa, G.
Cunliffe, S.
Corona, L.
De Nuccio, M.
De Pietro, G.
Dey, S.
Eliachevitch, M.
Feichtinger, P.
Ferber, T.
Gemmler, J.
Goldenzweig, P.
Gottmann, A.
Graziani, E.
Haigh, H.
Hohmann, M.
Humair, T.
Inguglia, G.
Kahn, J.
Keck, T.
Komarov, I.
Krohn, J.-F.
Kuhr, T.
Lacaprara, S.
Lieret, K.
Maiti, R.
Martini, A.
Meier, F.
Metzner, F.
Milesi, M.
Park, S.-H.
Prim, M.
Pulvermacher, C.
Ritter, M.
Sato, Y.
Schwanda, C.
Sutcliffe, W.
Tamponi, U.
Tenchini, F.
Urquijo, P.
Zani, L.
Žlebčík, R.
Zupanc, A.
author_facet Abudinén, F.
Bertemes, M.
Bilokin, S.
Campajola, M.
Casarosa, G.
Cunliffe, S.
Corona, L.
De Nuccio, M.
De Pietro, G.
Dey, S.
Eliachevitch, M.
Feichtinger, P.
Ferber, T.
Gemmler, J.
Goldenzweig, P.
Gottmann, A.
Graziani, E.
Haigh, H.
Hohmann, M.
Humair, T.
Inguglia, G.
Kahn, J.
Keck, T.
Komarov, I.
Krohn, J.-F.
Kuhr, T.
Lacaprara, S.
Lieret, K.
Maiti, R.
Martini, A.
Meier, F.
Metzner, F.
Milesi, M.
Park, S.-H.
Prim, M.
Pulvermacher, C.
Ritter, M.
Sato, Y.
Schwanda, C.
Sutcliffe, W.
Tamponi, U.
Tenchini, F.
Urquijo, P.
Zani, L.
Žlebčík, R.
Zupanc, A.
author_sort Abudinén, F.
collection PubMed
description We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.
format Online
Article
Text
id pubmed-8827400
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-88274002022-02-22 Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles Abudinén, F. Bertemes, M. Bilokin, S. Campajola, M. Casarosa, G. Cunliffe, S. Corona, L. De Nuccio, M. De Pietro, G. Dey, S. Eliachevitch, M. Feichtinger, P. Ferber, T. Gemmler, J. Goldenzweig, P. Gottmann, A. Graziani, E. Haigh, H. Hohmann, M. Humair, T. Inguglia, G. Kahn, J. Keck, T. Komarov, I. Krohn, J.-F. Kuhr, T. Lacaprara, S. Lieret, K. Maiti, R. Martini, A. Meier, F. Metzner, F. Milesi, M. Park, S.-H. Prim, M. Pulvermacher, C. Ritter, M. Sato, Y. Schwanda, C. Sutcliffe, W. Tamponi, U. Tenchini, F. Urquijo, P. Zani, L. Žlebčík, R. Zupanc, A. Eur Phys J C Part Fields Regular Article - Experimental Physics We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example. Springer Berlin Heidelberg 2022-02-08 2022 /pmc/articles/PMC8827400/ /pubmed/35210938 http://dx.doi.org/10.1140/epjc/s10052-022-10070-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . Funded by SCOAP3
spellingShingle Regular Article - Experimental Physics
Abudinén, F.
Bertemes, M.
Bilokin, S.
Campajola, M.
Casarosa, G.
Cunliffe, S.
Corona, L.
De Nuccio, M.
De Pietro, G.
Dey, S.
Eliachevitch, M.
Feichtinger, P.
Ferber, T.
Gemmler, J.
Goldenzweig, P.
Gottmann, A.
Graziani, E.
Haigh, H.
Hohmann, M.
Humair, T.
Inguglia, G.
Kahn, J.
Keck, T.
Komarov, I.
Krohn, J.-F.
Kuhr, T.
Lacaprara, S.
Lieret, K.
Maiti, R.
Martini, A.
Meier, F.
Metzner, F.
Milesi, M.
Park, S.-H.
Prim, M.
Pulvermacher, C.
Ritter, M.
Sato, Y.
Schwanda, C.
Sutcliffe, W.
Tamponi, U.
Tenchini, F.
Urquijo, P.
Zani, L.
Žlebčík, R.
Zupanc, A.
Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
title Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
title_full Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
title_fullStr Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
title_full_unstemmed Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
title_short Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
title_sort punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
topic Regular Article - Experimental Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827400/
https://www.ncbi.nlm.nih.gov/pubmed/35210938
http://dx.doi.org/10.1140/epjc/s10052-022-10070-0
work_keys_str_mv AT abudinenf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT bertemesm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT bilokins punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT campajolam punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT casarosag punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT cunliffes punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT coronal punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT denucciom punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT depietrog punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT deys punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT eliachevitchm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT feichtingerp punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT ferbert punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT gemmlerj punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT goldenzweigp punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT gottmanna punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT grazianie punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT haighh punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT hohmannm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT humairt punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT ingugliag punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT kahnj punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT keckt punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT komarovi punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT krohnjf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT kuhrt punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT lacapraras punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT lieretk punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT maitir punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT martinia punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT meierf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT metznerf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT milesim punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT parksh punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT primm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT pulvermacherc punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT ritterm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT satoy punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT schwandac punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT sutcliffew punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT tamponiu punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT tenchinif punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT urquijop punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT zanil punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT zlebcikr punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles
AT zupanca punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles