Cargando…
Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827400/ https://www.ncbi.nlm.nih.gov/pubmed/35210938 http://dx.doi.org/10.1140/epjc/s10052-022-10070-0 |
_version_ | 1784647619633479680 |
---|---|
author | Abudinén, F. Bertemes, M. Bilokin, S. Campajola, M. Casarosa, G. Cunliffe, S. Corona, L. De Nuccio, M. De Pietro, G. Dey, S. Eliachevitch, M. Feichtinger, P. Ferber, T. Gemmler, J. Goldenzweig, P. Gottmann, A. Graziani, E. Haigh, H. Hohmann, M. Humair, T. Inguglia, G. Kahn, J. Keck, T. Komarov, I. Krohn, J.-F. Kuhr, T. Lacaprara, S. Lieret, K. Maiti, R. Martini, A. Meier, F. Metzner, F. Milesi, M. Park, S.-H. Prim, M. Pulvermacher, C. Ritter, M. Sato, Y. Schwanda, C. Sutcliffe, W. Tamponi, U. Tenchini, F. Urquijo, P. Zani, L. Žlebčík, R. Zupanc, A. |
author_facet | Abudinén, F. Bertemes, M. Bilokin, S. Campajola, M. Casarosa, G. Cunliffe, S. Corona, L. De Nuccio, M. De Pietro, G. Dey, S. Eliachevitch, M. Feichtinger, P. Ferber, T. Gemmler, J. Goldenzweig, P. Gottmann, A. Graziani, E. Haigh, H. Hohmann, M. Humair, T. Inguglia, G. Kahn, J. Keck, T. Komarov, I. Krohn, J.-F. Kuhr, T. Lacaprara, S. Lieret, K. Maiti, R. Martini, A. Meier, F. Metzner, F. Milesi, M. Park, S.-H. Prim, M. Pulvermacher, C. Ritter, M. Sato, Y. Schwanda, C. Sutcliffe, W. Tamponi, U. Tenchini, F. Urquijo, P. Zani, L. Žlebčík, R. Zupanc, A. |
author_sort | Abudinén, F. |
collection | PubMed |
description | We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example. |
format | Online Article Text |
id | pubmed-8827400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-88274002022-02-22 Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles Abudinén, F. Bertemes, M. Bilokin, S. Campajola, M. Casarosa, G. Cunliffe, S. Corona, L. De Nuccio, M. De Pietro, G. Dey, S. Eliachevitch, M. Feichtinger, P. Ferber, T. Gemmler, J. Goldenzweig, P. Gottmann, A. Graziani, E. Haigh, H. Hohmann, M. Humair, T. Inguglia, G. Kahn, J. Keck, T. Komarov, I. Krohn, J.-F. Kuhr, T. Lacaprara, S. Lieret, K. Maiti, R. Martini, A. Meier, F. Metzner, F. Milesi, M. Park, S.-H. Prim, M. Pulvermacher, C. Ritter, M. Sato, Y. Schwanda, C. Sutcliffe, W. Tamponi, U. Tenchini, F. Urquijo, P. Zani, L. Žlebčík, R. Zupanc, A. Eur Phys J C Part Fields Regular Article - Experimental Physics We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example. Springer Berlin Heidelberg 2022-02-08 2022 /pmc/articles/PMC8827400/ /pubmed/35210938 http://dx.doi.org/10.1140/epjc/s10052-022-10070-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . Funded by SCOAP3 |
spellingShingle | Regular Article - Experimental Physics Abudinén, F. Bertemes, M. Bilokin, S. Campajola, M. Casarosa, G. Cunliffe, S. Corona, L. De Nuccio, M. De Pietro, G. Dey, S. Eliachevitch, M. Feichtinger, P. Ferber, T. Gemmler, J. Goldenzweig, P. Gottmann, A. Graziani, E. Haigh, H. Hohmann, M. Humair, T. Inguglia, G. Kahn, J. Keck, T. Komarov, I. Krohn, J.-F. Kuhr, T. Lacaprara, S. Lieret, K. Maiti, R. Martini, A. Meier, F. Metzner, F. Milesi, M. Park, S.-H. Prim, M. Pulvermacher, C. Ritter, M. Sato, Y. Schwanda, C. Sutcliffe, W. Tamponi, U. Tenchini, F. Urquijo, P. Zani, L. Žlebčík, R. Zupanc, A. Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
title | Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
title_full | Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
title_fullStr | Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
title_full_unstemmed | Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
title_short | Punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
title_sort | punzi-loss:: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles |
topic | Regular Article - Experimental Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827400/ https://www.ncbi.nlm.nih.gov/pubmed/35210938 http://dx.doi.org/10.1140/epjc/s10052-022-10070-0 |
work_keys_str_mv | AT abudinenf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT bertemesm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT bilokins punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT campajolam punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT casarosag punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT cunliffes punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT coronal punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT denucciom punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT depietrog punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT deys punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT eliachevitchm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT feichtingerp punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT ferbert punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT gemmlerj punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT goldenzweigp punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT gottmanna punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT grazianie punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT haighh punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT hohmannm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT humairt punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT ingugliag punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT kahnj punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT keckt punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT komarovi punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT krohnjf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT kuhrt punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT lacapraras punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT lieretk punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT maitir punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT martinia punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT meierf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT metznerf punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT milesim punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT parksh punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT primm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT pulvermacherc punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT ritterm punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT satoy punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT schwandac punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT sutcliffew punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT tamponiu punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT tenchinif punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT urquijop punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT zanil punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT zlebcikr punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles AT zupanca punzilossanondifferentiablemetricapproximationforsensitivityoptimisationinthesearchfornewparticles |