Cargando…
27337 Characterizing Temporal Patterns in Glucose Dysregulation Following SARS-CoV-2 Infection
ABSTRACT IMPACT: Understanding the longitudinal glucose changes following SARS-CoV-2 infection can inform point-of-care guidelines and elucidate the viral hypothesis of diabetes mellitus pathogenesis. OBJECTIVES/GOALS: Hyperglycemia has emerged as an important manifestation of SARS-CoV-2 infection i...
Autores principales: | Mistry, Sejal, Gouripeddi, Ramkiran, Facelli, Julio C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827682/ http://dx.doi.org/10.1017/cts.2021.523 |
Ejemplares similares
-
73432 Assessment of multi-pollutant ambient air composition on type 2 diabetes mellitus using machine learning.
por: Riches, Naomi Oiwa, et al.
Publicado: (2021) -
62859 Bringing Exposures into Mainstream Translational Research: Informatics Opportunities and Methods
por: Gouripeddi, Ram, et al.
Publicado: (2021) -
Data-driven identification of temporal glucose patterns in a large cohort of nondiabetic patients with COVID-19 using time-series clustering
por: Mistry, Sejal, et al.
Publicado: (2021) -
Erratum to: Data-driven identification of temporal glucose patterns in a large cohort of nondiabetic patients with COVID-19 using time-series clustering
por: Mistry, Sejal, et al.
Publicado: (2021) -
2166: Semantic characterization of clinical trial descriptions from ClincalTrials.gov and patient notes from MIMIC-III
por: Shao, Jianyin, et al.
Publicado: (2018)