Cargando…
39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection
ABSTRACT IMPACT: If immune checkpoint blockade increases bacterial clearance with or without antibiotics in vitro, clinical application would be almost immediate and dramatic creating a seismic shift in the current therapeutic paradigm of periprosthetic joint infection. OBJECTIVES/GOALS: Periprosthe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827706/ http://dx.doi.org/10.1017/cts.2021.435 |
_version_ | 1784647691639193600 |
---|---|
author | Warren, Shay Charville, Greg Amanatullah, Derek |
author_facet | Warren, Shay Charville, Greg Amanatullah, Derek |
author_sort | Warren, Shay |
collection | PubMed |
description | ABSTRACT IMPACT: If immune checkpoint blockade increases bacterial clearance with or without antibiotics in vitro, clinical application would be almost immediate and dramatic creating a seismic shift in the current therapeutic paradigm of periprosthetic joint infection. OBJECTIVES/GOALS: Periprosthetic joint infection (PJI) is a major cause of failure after joint replacement. Currently, the treatment of PJI relies on removing biofilm contaminated implants. Some of the bacteria within biofilm undergo a phenotypic shift becoming small colony variants (SCVs). SCVs induce local immunosuppression through PD-1/L1 signaling. METHODS/STUDY POPULATION: We will infect cultured human macrophages and bone marrow aspirate with stable Staphylococcus aureus SVCs and treat with anti-PD-1 or anti-PD-L1 monoclonal antibodies with and without antibiotics (e.g., gentamycin, cefazolin, vancomycin, rifampicin) and assess the residual bacterial viability. We will utilize multiplexed ion beam imaging to quantify PD-1/L1 expression in human tissue from patients with a chronic PJI and compare those to patients undergoing an aseptic revision. Patients with a chronic PJI are likely to have increased expression of PD-1/L1 as their tissue samples are prospectively screened. RESULTS/ANTICIPATED RESULTS: SCVs reduce the phagocytic activity of macrophages and can survive intracellularly. SCVs also induce anti-inflammatory M2-macrophage polarization and recruit a heterogeneous group of immature monocytes and granulocytes called myeloid-derived suppressor cells (MDSC) to the periprosthetic microenvironment. M2-macrophages and MDSCs then produce an immunosuppressive cytokine milieu characterized by increased IL-10 and decreased TNF-α. Clinically isolated SCVs up-regulate the expression of PD-L1 and PD-L2 on the surface of macrophages, representing a mechanism by which SCVs induce host immunosuppression and survive immune clearance. Our preliminary data show PD-L1 expression during septic PJI, but not in aseptic revisions. DISCUSSION/SIGNIFICANCE OF FINDINGS: If immune checkpoint blockade is shown to increase bacterial clearance with or without antibiotics, host immunomodulation would represent a novel class of therapeutic adjuvants to assist surgical debridement and antibiotic administration that could be superimposed on existing treatment algorithms to improve PJI related outcomes. |
format | Online Article Text |
id | pubmed-8827706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88277062022-02-28 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection Warren, Shay Charville, Greg Amanatullah, Derek J Clin Transl Sci Basic Science ABSTRACT IMPACT: If immune checkpoint blockade increases bacterial clearance with or without antibiotics in vitro, clinical application would be almost immediate and dramatic creating a seismic shift in the current therapeutic paradigm of periprosthetic joint infection. OBJECTIVES/GOALS: Periprosthetic joint infection (PJI) is a major cause of failure after joint replacement. Currently, the treatment of PJI relies on removing biofilm contaminated implants. Some of the bacteria within biofilm undergo a phenotypic shift becoming small colony variants (SCVs). SCVs induce local immunosuppression through PD-1/L1 signaling. METHODS/STUDY POPULATION: We will infect cultured human macrophages and bone marrow aspirate with stable Staphylococcus aureus SVCs and treat with anti-PD-1 or anti-PD-L1 monoclonal antibodies with and without antibiotics (e.g., gentamycin, cefazolin, vancomycin, rifampicin) and assess the residual bacterial viability. We will utilize multiplexed ion beam imaging to quantify PD-1/L1 expression in human tissue from patients with a chronic PJI and compare those to patients undergoing an aseptic revision. Patients with a chronic PJI are likely to have increased expression of PD-1/L1 as their tissue samples are prospectively screened. RESULTS/ANTICIPATED RESULTS: SCVs reduce the phagocytic activity of macrophages and can survive intracellularly. SCVs also induce anti-inflammatory M2-macrophage polarization and recruit a heterogeneous group of immature monocytes and granulocytes called myeloid-derived suppressor cells (MDSC) to the periprosthetic microenvironment. M2-macrophages and MDSCs then produce an immunosuppressive cytokine milieu characterized by increased IL-10 and decreased TNF-α. Clinically isolated SCVs up-regulate the expression of PD-L1 and PD-L2 on the surface of macrophages, representing a mechanism by which SCVs induce host immunosuppression and survive immune clearance. Our preliminary data show PD-L1 expression during septic PJI, but not in aseptic revisions. DISCUSSION/SIGNIFICANCE OF FINDINGS: If immune checkpoint blockade is shown to increase bacterial clearance with or without antibiotics, host immunomodulation would represent a novel class of therapeutic adjuvants to assist surgical debridement and antibiotic administration that could be superimposed on existing treatment algorithms to improve PJI related outcomes. Cambridge University Press 2021-03-30 /pmc/articles/PMC8827706/ http://dx.doi.org/10.1017/cts.2021.435 Text en © The Association for Clinical and Translational Science 2021 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Basic Science Warren, Shay Charville, Greg Amanatullah, Derek 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection |
title | 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection |
title_full | 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection |
title_fullStr | 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection |
title_full_unstemmed | 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection |
title_short | 39800 Immune Checkpoint Blockade during Periprosthetic Joint Infection |
title_sort | 39800 immune checkpoint blockade during periprosthetic joint infection |
topic | Basic Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827706/ http://dx.doi.org/10.1017/cts.2021.435 |
work_keys_str_mv | AT warrenshay 39800immunecheckpointblockadeduringperiprostheticjointinfection AT charvillegreg 39800immunecheckpointblockadeduringperiprostheticjointinfection AT amanatullahderek 39800immunecheckpointblockadeduringperiprostheticjointinfection |