Cargando…
67409 Quantifying Unmeasured Confounding in Relationship between Treatment Intensity and Outcomes among Older Patients with Hodgkin Lymphoma (HL) using Surveillance, Epidemiology and End Results (SEER)-Medicare Data
ABSTRACT IMPACT: E-values can help quantify the amount of unmeasured confounded necessary to fully explain away a relationship between treatment and outcomes in observational data. OBJECTIVES/GOALS: Older patients with HL have worse outcomes than younger patients, which may reflect treatment choice...
Autores principales: | Rodday, Angie Mae, Hahn, Theresa, Lindenauer, Peter K., Parsons, Susan K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827716/ http://dx.doi.org/10.1017/cts.2021.531 |
Ejemplares similares
-
3014 Identification of a Cohort to Study Treatment Patterns in Elderly Patients with Incident Hodgkin Lymphoma (HL) using Surveillance, Epidemiology and End Results (SEER)-Medicare Data
por: Rodday, Angie Mae, et al.
Publicado: (2019) -
4074 The Role of Immortal Time Bias When Linking Treatment to Outcomes among Older Patients with Incident Hodgkin Lymphoma (HL) using Surveillance, Epidemiology and End Results (SEER)-Medicare Data
por: Rodday, Angie Mae, et al.
Publicado: (2020) -
Association of Treatment Intensity With Survival in Older Patients With Hodgkin Lymphoma
por: Rodday, Angie Mae, et al.
Publicado: (2021) -
Quantifying the impact of unmeasured confounding in observational studies with the E value
por: Gaster, Tobias, et al.
Publicado: (2023) -
Assessing Techniques for Quantifying the Impact of Bias Due to an Unmeasured Confounder: An Applied Example
por: Barberio, Julie, et al.
Publicado: (2021)