Cargando…
41250 Machine Learning to Identify Predictors of Iatrogenic Injury Using Empirical Bayes Estimates: A Cohort Study of Pressure Injury Prevention
ABSTRACT IMPACT: A machine learning approach using electronic health records can combine descriptive, population-level factors of pressure injury outcomes. OBJECTIVES/GOALS: Pressure injuries cause 60,000 deaths and cost $26 billion annually in the US, but prevention is laborious. We used clinical d...
Autores principales: | Padula, William V., Armstrong, David G., Davidson, Patricia M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827776/ http://dx.doi.org/10.1017/cts.2021.530 |
Ejemplares similares
-
4462 Effects of Injectable, Erythropoietin and Glucocorticoids Combinational Therapy on Erythrocyte Sedimentation Rate Following Spinal Cord Injury
por: Nia, Anna, et al.
Publicado: (2020) -
4494 Predictors of Reintubation After Cardiac Surgery
por: Freundlich, Robert Edward, et al.
Publicado: (2020) -
4182 Use of Machine Learning for Surgical Outcomes Research: what are the clinical implications?
por: Armijo, Priscila Rodrigues, et al.
Publicado: (2020) -
4525 Estimates of Dose Response using the Dixon Up-and-Down Method and BOIN study designs
por: Minard, Charles Gene
Publicado: (2020) -
73432 Assessment of multi-pollutant ambient air composition on type 2 diabetes mellitus using machine learning.
por: Riches, Naomi Oiwa, et al.
Publicado: (2021)