Cargando…

56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer

ABSTRACT IMPACT: Identifying an important pathway in treatment resistant TNBC will allow for the future development of clinical therapeutics specific for this disease. OBJECTIVES/GOALS: Triple Negative Breast Cancer (TNBC) is a subtype of breast cancer characterized by negative expression of estroge...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Khoa, Alzoubi, Madlin, Hebert, Katherine, Cheng, Thomas, Elliott, Steven, Burow, Matthew, Collins-Burow, Bridgette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827792/
http://dx.doi.org/10.1017/cts.2021.442
_version_ 1784647713461108736
author Nguyen, Khoa
Alzoubi, Madlin
Hebert, Katherine
Cheng, Thomas
Elliott, Steven
Burow, Matthew
Collins-Burow, Bridgette
author_facet Nguyen, Khoa
Alzoubi, Madlin
Hebert, Katherine
Cheng, Thomas
Elliott, Steven
Burow, Matthew
Collins-Burow, Bridgette
author_sort Nguyen, Khoa
collection PubMed
description ABSTRACT IMPACT: Identifying an important pathway in treatment resistant TNBC will allow for the future development of clinical therapeutics specific for this disease. OBJECTIVES/GOALS: Triple Negative Breast Cancer (TNBC) is a subtype of breast cancer characterized by negative expression of estrogen receptor, progesterone receptor, and HER2/neu amplification. It resists therapies and has a high recurrence rate after resection. The goal of my research is to identify & characterize a TNBC pathway for future development of therapies. METHODS/STUDY POPULATION: The project uses a combination of cell lines, patient derived xenograft (PDX) models, as well as patient databases. Standard cellular and molecular biology techniques will be used including: Cell culture, qPCR, western blotting, and flow cytometry. RESULTS/ANTICIPATED RESULTS: LKB1 is a master kinase that activates 14 possible downstream kinases. The signaling pathway has been demonstrated to play a role in energy homeostasis and metabolism. Mutation of LKB1 signaling results in Peutz-Jeghers Syndrome and is associated with neoplasias of the lung, pancreas, and breast. Based on preliminary analysis, overexpression of LKB1 by shRNA in TNBC cell lines results in suppression of EMT and reduction of the cancer stem cell population. Additional studies show that LKB1 overexpression has no effect on growth rate in 2D culture while significant reduction in 3D mammosphere formations can be seen. Downstream studies using commercially available SIK1 inhibitor HG-9-91-01 is able to induce a larger fraction of CSC from reduced LKB1 overexpression as well as from baseline levels. DISCUSSION/SIGNIFICANCE OF FINDINGS: Overall, our results suggest that LKB1 acts through SIK1 to suppress EMT and the generation of cancer stem cells. This results in reduced cancer functionality, as evidenced by inhibition of mammosphere formation. These results establishes a foundation for future mechanistic studies on the LKB1 axis and its mechanisms in TNBC.
format Online
Article
Text
id pubmed-8827792
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-88277922022-02-28 56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer Nguyen, Khoa Alzoubi, Madlin Hebert, Katherine Cheng, Thomas Elliott, Steven Burow, Matthew Collins-Burow, Bridgette J Clin Transl Sci Basic Science ABSTRACT IMPACT: Identifying an important pathway in treatment resistant TNBC will allow for the future development of clinical therapeutics specific for this disease. OBJECTIVES/GOALS: Triple Negative Breast Cancer (TNBC) is a subtype of breast cancer characterized by negative expression of estrogen receptor, progesterone receptor, and HER2/neu amplification. It resists therapies and has a high recurrence rate after resection. The goal of my research is to identify & characterize a TNBC pathway for future development of therapies. METHODS/STUDY POPULATION: The project uses a combination of cell lines, patient derived xenograft (PDX) models, as well as patient databases. Standard cellular and molecular biology techniques will be used including: Cell culture, qPCR, western blotting, and flow cytometry. RESULTS/ANTICIPATED RESULTS: LKB1 is a master kinase that activates 14 possible downstream kinases. The signaling pathway has been demonstrated to play a role in energy homeostasis and metabolism. Mutation of LKB1 signaling results in Peutz-Jeghers Syndrome and is associated with neoplasias of the lung, pancreas, and breast. Based on preliminary analysis, overexpression of LKB1 by shRNA in TNBC cell lines results in suppression of EMT and reduction of the cancer stem cell population. Additional studies show that LKB1 overexpression has no effect on growth rate in 2D culture while significant reduction in 3D mammosphere formations can be seen. Downstream studies using commercially available SIK1 inhibitor HG-9-91-01 is able to induce a larger fraction of CSC from reduced LKB1 overexpression as well as from baseline levels. DISCUSSION/SIGNIFICANCE OF FINDINGS: Overall, our results suggest that LKB1 acts through SIK1 to suppress EMT and the generation of cancer stem cells. This results in reduced cancer functionality, as evidenced by inhibition of mammosphere formation. These results establishes a foundation for future mechanistic studies on the LKB1 axis and its mechanisms in TNBC. Cambridge University Press 2021-03-30 /pmc/articles/PMC8827792/ http://dx.doi.org/10.1017/cts.2021.442 Text en © The Association for Clinical and Translational Science 2021 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Basic Science
Nguyen, Khoa
Alzoubi, Madlin
Hebert, Katherine
Cheng, Thomas
Elliott, Steven
Burow, Matthew
Collins-Burow, Bridgette
56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer
title 56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer
title_full 56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer
title_fullStr 56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer
title_full_unstemmed 56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer
title_short 56371 The Signaling Axis of Tumor Suppressor LKB1 in Triple Negative Breast Cancer
title_sort 56371 the signaling axis of tumor suppressor lkb1 in triple negative breast cancer
topic Basic Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827792/
http://dx.doi.org/10.1017/cts.2021.442
work_keys_str_mv AT nguyenkhoa 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer
AT alzoubimadlin 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer
AT hebertkatherine 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer
AT chengthomas 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer
AT elliottsteven 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer
AT burowmatthew 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer
AT collinsburowbridgette 56371thesignalingaxisoftumorsuppressorlkb1intriplenegativebreastcancer