Cargando…

00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy

ABSTRACT IMPACT: Urine tumor DNA non-invasively detects minimal residual disease and infers tumor mutational burden in locally advanced bladder cancer prior to radical cystectomy, which may potentially enable the selection of patients for bladder-sparing treatment or facilitate personalized adjuvant...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kevin, Chauhan, Pradeep S., Babbra, Ramandeep K., Feng, Wenjia, Kim, Eric H., Smith, Zachary L., Arora, Vivek K., Chaudhuri, Aadel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827992/
http://dx.doi.org/10.1017/cts.2021.690
_version_ 1784647764545634304
author Chen, Kevin
Chauhan, Pradeep S.
Babbra, Ramandeep K.
Feng, Wenjia
Kim, Eric H.
Smith, Zachary L.
Arora, Vivek K.
Chaudhuri, Aadel A.
author_facet Chen, Kevin
Chauhan, Pradeep S.
Babbra, Ramandeep K.
Feng, Wenjia
Kim, Eric H.
Smith, Zachary L.
Arora, Vivek K.
Chaudhuri, Aadel A.
author_sort Chen, Kevin
collection PubMed
description ABSTRACT IMPACT: Urine tumor DNA non-invasively detects minimal residual disease and infers tumor mutational burden in locally advanced bladder cancer prior to radical cystectomy, which may potentially enable the selection of patients for bladder-sparing treatment or facilitate personalized adjuvant immunotherapy. OBJECTIVES/GOALS: Standard-of-care treatment for muscle-invasive bladder cancer (MIBC) is radical cystectomy. The inability to assess minimal residual disease (MRD) non-invasively limits our ability to offer bladder-sparing treatment. We sought to develop a liquid biopsy solution via urine tumor DNA (utDNA) analysis. METHODS/STUDY POPULATION: We applied uCAPP-Seq, a targeted sequencing method for detecting utDNA, to urine cell-free DNA samples acquired on the day of radical cystectomy from 42 patients with bladder cancer. utDNA variant-calling was performed non-invasively without prior tumor mutational knowledge. The overall utDNA level for each patient was represented by the non-silent mutation with the highest variant allele fraction after removing germline variants. Urine was similarly analyzed from 15 healthy adults. Tumor mutational burden (TMB) was inferred from the number of non-silent mutations detected in urine cell-free DNA by applying a linear relationship derived from TCGA whole exome sequencing of 409 MIBC tumors. RESULTS/ANTICIPATED RESULTS: utDNA levels were significantly higher in patients with residual disease detected in their surgical pathology compared to those who achieved a pathologic complete response (P = 0.002). Using an optimal utDNA threshold to define MRD detection, positive utDNA MRD significantly predicted the absence of pathologic complete response with a sensitivity of 81% and specificity of 81%. Positive utDNA MRD also portended significantly worse progression-free survival (HR = 7.4; P = 0.03) compared to negative utDNA MRD. Furthermore, we applied a linear relationship (Pearson r = 0.84; P < 0.0001) to identify patients with high inferred TMB who may have been candidates for early immune checkpoint blockade. DISCUSSION/SIGNIFICANCE OF FINDINGS: utDNA MRD analysis prior to surgery correlated significantly with pathologic response and progression-free survival, which may help select patients for bladder-sparing treatment. utDNA can also non-invasively infer TMB, which could facilitate personalized adjuvant therapy for patients in the future.
format Online
Article
Text
id pubmed-8827992
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-88279922022-02-28 00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy Chen, Kevin Chauhan, Pradeep S. Babbra, Ramandeep K. Feng, Wenjia Kim, Eric H. Smith, Zachary L. Arora, Vivek K. Chaudhuri, Aadel A. J Clin Transl Sci Translational Science and Policy and Health Outcomes Science ABSTRACT IMPACT: Urine tumor DNA non-invasively detects minimal residual disease and infers tumor mutational burden in locally advanced bladder cancer prior to radical cystectomy, which may potentially enable the selection of patients for bladder-sparing treatment or facilitate personalized adjuvant immunotherapy. OBJECTIVES/GOALS: Standard-of-care treatment for muscle-invasive bladder cancer (MIBC) is radical cystectomy. The inability to assess minimal residual disease (MRD) non-invasively limits our ability to offer bladder-sparing treatment. We sought to develop a liquid biopsy solution via urine tumor DNA (utDNA) analysis. METHODS/STUDY POPULATION: We applied uCAPP-Seq, a targeted sequencing method for detecting utDNA, to urine cell-free DNA samples acquired on the day of radical cystectomy from 42 patients with bladder cancer. utDNA variant-calling was performed non-invasively without prior tumor mutational knowledge. The overall utDNA level for each patient was represented by the non-silent mutation with the highest variant allele fraction after removing germline variants. Urine was similarly analyzed from 15 healthy adults. Tumor mutational burden (TMB) was inferred from the number of non-silent mutations detected in urine cell-free DNA by applying a linear relationship derived from TCGA whole exome sequencing of 409 MIBC tumors. RESULTS/ANTICIPATED RESULTS: utDNA levels were significantly higher in patients with residual disease detected in their surgical pathology compared to those who achieved a pathologic complete response (P = 0.002). Using an optimal utDNA threshold to define MRD detection, positive utDNA MRD significantly predicted the absence of pathologic complete response with a sensitivity of 81% and specificity of 81%. Positive utDNA MRD also portended significantly worse progression-free survival (HR = 7.4; P = 0.03) compared to negative utDNA MRD. Furthermore, we applied a linear relationship (Pearson r = 0.84; P < 0.0001) to identify patients with high inferred TMB who may have been candidates for early immune checkpoint blockade. DISCUSSION/SIGNIFICANCE OF FINDINGS: utDNA MRD analysis prior to surgery correlated significantly with pathologic response and progression-free survival, which may help select patients for bladder-sparing treatment. utDNA can also non-invasively infer TMB, which could facilitate personalized adjuvant therapy for patients in the future. Cambridge University Press 2021-03-30 /pmc/articles/PMC8827992/ http://dx.doi.org/10.1017/cts.2021.690 Text en © The Association for Clinical and Translational Science 2021 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Translational Science and Policy and Health Outcomes Science
Chen, Kevin
Chauhan, Pradeep S.
Babbra, Ramandeep K.
Feng, Wenjia
Kim, Eric H.
Smith, Zachary L.
Arora, Vivek K.
Chaudhuri, Aadel A.
00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
title 00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
title_full 00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
title_fullStr 00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
title_full_unstemmed 00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
title_short 00005 Urine tumor DNA detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
title_sort 00005 urine tumor dna detects minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy
topic Translational Science and Policy and Health Outcomes Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827992/
http://dx.doi.org/10.1017/cts.2021.690
work_keys_str_mv AT chenkevin 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT chauhanpradeeps 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT babbraramandeepk 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT fengwenjia 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT kimerich 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT smithzacharyl 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT aroravivekk 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy
AT chaudhuriaadela 00005urinetumordnadetectsminimalresidualdiseaseinmuscleinvasivebladdercancertreatedwithcurativeintentradicalcystectomy