Cargando…
Global-Local Spatial-Temporal Residual Correlation Network for Urban Traffic Status Prediction
The recent proposed Spatial-Temporal Residual Network (ST-ResNet) model is an effective tool to extract both spatial and temporal characteristics and has been successfully applied to urban traffic status prediction. However, the ST-ResNet model only extracts the local spatial characteristics and ign...
Autores principales: | Bao, Yin-Xin, Cao, Yang, Shen, Qin-Qin, Shi, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828331/ https://www.ncbi.nlm.nih.gov/pubmed/35154304 http://dx.doi.org/10.1155/2022/7344522 |
Ejemplares similares
-
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Using temporal detrending to observe the spatial correlation of traffic
por: Ermagun, Alireza, et al.
Publicado: (2017) -
A Novel Approach to Calculate the Spatial–Temporal Correlation for Traffic Flow Based on the Structure of Urban Road Networks and Traffic Dynamic Theory
por: Du, Mao, et al.
Publicado: (2021) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations
por: Dong, Tianyang, et al.
Publicado: (2019)