Cargando…
Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain
In response to the COVID-19 pandemic, governments declared severe restrictions throughout 2020, presenting an unprecedented scenario of reduced anthropogenic emissions of air pollutants derived mainly from traffic sources. To analyze the effect of these restrictions derived from COVID-19 pandemic on...
Autores principales: | González-Pardo, Jaime, Ceballos-Santos, Sandra, Manzanas, Rodrigo, Santibáñez, Miguel, Fernández-Olmo, Ignacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828445/ https://www.ncbi.nlm.nih.gov/pubmed/35151743 http://dx.doi.org/10.1016/j.scitotenv.2022.153786 |
Ejemplares similares
-
Meteorological Normalisation Using Boosted Regression Trees to Estimate the Impact of COVID-19 Restrictions on Air Quality Levels
por: Ceballos-Santos, Sandra, et al.
Publicado: (2021) -
Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China
por: Wu, Cui-lin, et al.
Publicado: (2021) -
Traffic-related air pollution reduction at UK schools during the Covid-19 lockdown
por: Brown, Louis, et al.
Publicado: (2021) -
Air pollution measurements in traffic tunnels.
por: De Fré, R, et al.
Publicado: (1994) -
Traffic Air Pollution and Oxidized LDL
por: Jacobs, Lotte, et al.
Publicado: (2011)