Cargando…
The RavA/VemR two‐component system plays vital regulatory roles in the motility and virulence of Xanthomonas campestris
Xanthomonas campestris pv. campestris (Xcc) can cause black rot in cruciferous plants worldwide. Two‐component systems (TCSs) are key for bacterial adaptation to various environments, including hosts. VemR is a TCS response regulator and crucial for Xcc motility and virulence. Here, we report that R...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828458/ https://www.ncbi.nlm.nih.gov/pubmed/34837306 http://dx.doi.org/10.1111/mpp.13164 |
Sumario: | Xanthomonas campestris pv. campestris (Xcc) can cause black rot in cruciferous plants worldwide. Two‐component systems (TCSs) are key for bacterial adaptation to various environments, including hosts. VemR is a TCS response regulator and crucial for Xcc motility and virulence. Here, we report that RavA is the cognate histidine kinase (HK) of VemR and elucidate the signalling pathway by which VemR regulates Xcc motility and virulence. Genetic analysis showed that VemR is epistatic to RavA. Using bacterial two‐hybrid experiments and pull‐down and phosphorylation assays, we found that RavA can interact with and phosphorylate VemR, suggesting that RavA is the cognate HK of VemR. In addition, we found that RpoN2 and FleQ are epistatic to VemR in regulating bacterial motility and virulence. In vivo and in vitro experiments demonstrated that VemR interacts with FleQ but not with RpoN2. RavA/VemR regulates the expression of the flagellin‐encoding gene fliC by activating the transcription of the rpoN2‐vemR‐fleQ and flhF‐fleN‐fliA operons. In summary, our data show that the RavA/VemR TCS regulates FleQ activity and thus influences the expression of motility‐related genes, thereby affecting Xcc motility and virulence. The identification of this novel signalling pathway will deepen our understanding of Xcc–plant interactions. |
---|