Cargando…
Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions
In natural systems, plant–symbiont–pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-om...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828500/ https://www.ncbi.nlm.nih.gov/pubmed/35154169 http://dx.doi.org/10.3389/fpls.2021.700200 |
_version_ | 1784647860177862656 |
---|---|
author | Chen, Xue-liang Sun, Mei-chen Chong, Sun-li Si, Jin-ping Wu, Ling-shang |
author_facet | Chen, Xue-liang Sun, Mei-chen Chong, Sun-li Si, Jin-ping Wu, Ling-shang |
author_sort | Chen, Xue-liang |
collection | PubMed |
description | In natural systems, plant–symbiont–pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant–microbe interactions, especially plant–endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant–endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant–microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications. |
format | Online Article Text |
id | pubmed-8828500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88285002022-02-11 Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions Chen, Xue-liang Sun, Mei-chen Chong, Sun-li Si, Jin-ping Wu, Ling-shang Front Plant Sci Plant Science In natural systems, plant–symbiont–pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant–microbe interactions, especially plant–endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant–endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant–microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications. Frontiers Media S.A. 2022-01-27 /pmc/articles/PMC8828500/ /pubmed/35154169 http://dx.doi.org/10.3389/fpls.2021.700200 Text en Copyright © 2022 Chen, Sun, Chong, Si and Wu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Chen, Xue-liang Sun, Mei-chen Chong, Sun-li Si, Jin-ping Wu, Ling-shang Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions |
title | Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions |
title_full | Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions |
title_fullStr | Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions |
title_full_unstemmed | Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions |
title_short | Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant–Endophyte Interactions |
title_sort | transcriptomic and metabolomic approaches deepen our knowledge of plant–endophyte interactions |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828500/ https://www.ncbi.nlm.nih.gov/pubmed/35154169 http://dx.doi.org/10.3389/fpls.2021.700200 |
work_keys_str_mv | AT chenxueliang transcriptomicandmetabolomicapproachesdeepenourknowledgeofplantendophyteinteractions AT sunmeichen transcriptomicandmetabolomicapproachesdeepenourknowledgeofplantendophyteinteractions AT chongsunli transcriptomicandmetabolomicapproachesdeepenourknowledgeofplantendophyteinteractions AT sijinping transcriptomicandmetabolomicapproachesdeepenourknowledgeofplantendophyteinteractions AT wulingshang transcriptomicandmetabolomicapproachesdeepenourknowledgeofplantendophyteinteractions |