Cargando…

Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy

Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic ins...

Descripción completa

Detalles Bibliográficos
Autores principales: Duelen, Robin, Costamagna, Domiziana, Gilbert, Guillaume, Waele, Liesbeth De, Goemans, Nathalie, Desloovere, Kaat, Verfaillie, Catherine M., Sipido, Karin R., Buyse, Gunnar M., Sampaolesi, Maurilio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828550/
https://www.ncbi.nlm.nih.gov/pubmed/35090586
http://dx.doi.org/10.1016/j.stemcr.2021.12.019
_version_ 1784647872336101376
author Duelen, Robin
Costamagna, Domiziana
Gilbert, Guillaume
Waele, Liesbeth De
Goemans, Nathalie
Desloovere, Kaat
Verfaillie, Catherine M.
Sipido, Karin R.
Buyse, Gunnar M.
Sampaolesi, Maurilio
author_facet Duelen, Robin
Costamagna, Domiziana
Gilbert, Guillaume
Waele, Liesbeth De
Goemans, Nathalie
Desloovere, Kaat
Verfaillie, Catherine M.
Sipido, Karin R.
Buyse, Gunnar M.
Sampaolesi, Maurilio
author_sort Duelen, Robin
collection PubMed
description Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy.
format Online
Article
Text
id pubmed-8828550
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88285502022-02-14 Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy Duelen, Robin Costamagna, Domiziana Gilbert, Guillaume Waele, Liesbeth De Goemans, Nathalie Desloovere, Kaat Verfaillie, Catherine M. Sipido, Karin R. Buyse, Gunnar M. Sampaolesi, Maurilio Stem Cell Reports Article Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy. Elsevier 2022-01-27 /pmc/articles/PMC8828550/ /pubmed/35090586 http://dx.doi.org/10.1016/j.stemcr.2021.12.019 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Duelen, Robin
Costamagna, Domiziana
Gilbert, Guillaume
Waele, Liesbeth De
Goemans, Nathalie
Desloovere, Kaat
Verfaillie, Catherine M.
Sipido, Karin R.
Buyse, Gunnar M.
Sampaolesi, Maurilio
Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
title Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
title_full Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
title_fullStr Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
title_full_unstemmed Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
title_short Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
title_sort human ipsc model reveals a central role for nox4 and oxidative stress in duchenne cardiomyopathy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828550/
https://www.ncbi.nlm.nih.gov/pubmed/35090586
http://dx.doi.org/10.1016/j.stemcr.2021.12.019
work_keys_str_mv AT duelenrobin humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT costamagnadomiziana humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT gilbertguillaume humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT waeleliesbethde humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT goemansnathalie humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT deslooverekaat humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT verfailliecatherinem humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT sipidokarinr humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT buysegunnarm humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy
AT sampaolesimaurilio humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy