Cargando…
Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy
Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic ins...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828550/ https://www.ncbi.nlm.nih.gov/pubmed/35090586 http://dx.doi.org/10.1016/j.stemcr.2021.12.019 |
_version_ | 1784647872336101376 |
---|---|
author | Duelen, Robin Costamagna, Domiziana Gilbert, Guillaume Waele, Liesbeth De Goemans, Nathalie Desloovere, Kaat Verfaillie, Catherine M. Sipido, Karin R. Buyse, Gunnar M. Sampaolesi, Maurilio |
author_facet | Duelen, Robin Costamagna, Domiziana Gilbert, Guillaume Waele, Liesbeth De Goemans, Nathalie Desloovere, Kaat Verfaillie, Catherine M. Sipido, Karin R. Buyse, Gunnar M. Sampaolesi, Maurilio |
author_sort | Duelen, Robin |
collection | PubMed |
description | Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy. |
format | Online Article Text |
id | pubmed-8828550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88285502022-02-14 Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy Duelen, Robin Costamagna, Domiziana Gilbert, Guillaume Waele, Liesbeth De Goemans, Nathalie Desloovere, Kaat Verfaillie, Catherine M. Sipido, Karin R. Buyse, Gunnar M. Sampaolesi, Maurilio Stem Cell Reports Article Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy. Elsevier 2022-01-27 /pmc/articles/PMC8828550/ /pubmed/35090586 http://dx.doi.org/10.1016/j.stemcr.2021.12.019 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Duelen, Robin Costamagna, Domiziana Gilbert, Guillaume Waele, Liesbeth De Goemans, Nathalie Desloovere, Kaat Verfaillie, Catherine M. Sipido, Karin R. Buyse, Gunnar M. Sampaolesi, Maurilio Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy |
title | Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy |
title_full | Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy |
title_fullStr | Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy |
title_full_unstemmed | Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy |
title_short | Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy |
title_sort | human ipsc model reveals a central role for nox4 and oxidative stress in duchenne cardiomyopathy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828550/ https://www.ncbi.nlm.nih.gov/pubmed/35090586 http://dx.doi.org/10.1016/j.stemcr.2021.12.019 |
work_keys_str_mv | AT duelenrobin humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT costamagnadomiziana humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT gilbertguillaume humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT waeleliesbethde humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT goemansnathalie humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT deslooverekaat humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT verfailliecatherinem humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT sipidokarinr humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT buysegunnarm humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy AT sampaolesimaurilio humanipscmodelrevealsacentralrolefornox4andoxidativestressinduchennecardiomyopathy |