Cargando…
Deep Learning Algorithm for Automated Detection of Polycystic Ovary Syndrome Using Scleral Images
The high prevalence of polycystic ovary syndrome (PCOS) among reproductive-aged women has attracted more and more attention. As a common disorder that is likely to threaten women’s health physically and mentally, the detection of PCOS is a growing public health concern worldwide. In this paper, we p...
Autores principales: | Lv, Wenqi, Song, Ying, Fu, Rongxin, Lin, Xue, Su, Ya, Jin, Xiangyu, Yang, Han, Shan, Xiaohui, Du, Wenli, Huang, Qin, Zhong, Hao, Jiang, Kai, Zhang, Zhi, Wang, Lina, Huang, Guoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828568/ https://www.ncbi.nlm.nih.gov/pubmed/35154003 http://dx.doi.org/10.3389/fendo.2021.789878 |
Ejemplares similares
-
Associations Between Asthma and Polycystic Ovary Syndrome: Current Perspectives
por: Xu, Yue, et al.
Publicado: (2022) -
Machine Learning System for Lung Neoplasms Distinguished Based on Scleral Data
por: Huang, Qin, et al.
Publicado: (2023) -
Kisspeptin and Polycystic Ovary Syndrome
por: Tang, Rong, et al.
Publicado: (2019) -
Editorial: Polycystic ovary syndrome (PCOS): Mechanism and management
por: Wang, Yishu, et al.
Publicado: (2022) -
ANGPTL4 Expression in Ovarian Granulosa Cells Is Associated With Polycystic Ovary Syndrome
por: Jiang, Qi, et al.
Publicado: (2022)