Cargando…
Automated detection of lung cancer-caused metastasis by classifying scintigraphic images using convolutional neural network with residual connection and hybrid attention mechanism
BACKGROUND: Whole-body bone scan is the widely used tool for surveying bone metastases caused by various primary solid tumors including lung cancer. Scintigraphic images are characterized by low specificity, bringing a significant challenge to manual analysis of images by nuclear medicine physicians...
Autores principales: | Guo, Yanru, Lin, Qiang, Zhao, Shaofang, Li, Tongtong, Cao, Yongchun, Man, Zhengxing, Zeng, Xianwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828823/ https://www.ncbi.nlm.nih.gov/pubmed/35138479 http://dx.doi.org/10.1186/s13244-022-01162-2 |
Ejemplares similares
-
Multiclass classification of whole‐body scintigraphic images using a self‐defined convolutional neural network with attention modules
por: Lin, Qiang, et al.
Publicado: (2021) -
Deep learning based automated diagnosis of bone metastases with SPECT thoracic bone images
por: Lin, Qiang, et al.
Publicado: (2021) -
dSPIC: a deep SPECT image classification network for automated multi-disease, multi-lesion diagnosis
por: Lin, Qiang, et al.
Publicado: (2021) -
Multiple Metastasis-Like Bone Lesions in Scintigraphic Imaging
por: Zhang, Ying, et al.
Publicado: (2012) -
Deep learning based automatic segmentation of metastasis hotspots in thorax bone SPECT images
por: Lin, Qiang, et al.
Publicado: (2020)