Cargando…
Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae
Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the poten...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828847/ https://www.ncbi.nlm.nih.gov/pubmed/35140298 http://dx.doi.org/10.1038/s41598-022-06321-5 |
_version_ | 1784647930736541696 |
---|---|
author | Kalhoro, Muhammad Talib Zhang, Hong Kalhoro, Ghulam Mujtaba Wang, Fukai Chen, Tianhong Faqir, Yahya Nabi, Farhan |
author_facet | Kalhoro, Muhammad Talib Zhang, Hong Kalhoro, Ghulam Mujtaba Wang, Fukai Chen, Tianhong Faqir, Yahya Nabi, Farhan |
author_sort | Kalhoro, Muhammad Talib |
collection | PubMed |
description | Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts. |
format | Online Article Text |
id | pubmed-8828847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88288472022-02-10 Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae Kalhoro, Muhammad Talib Zhang, Hong Kalhoro, Ghulam Mujtaba Wang, Fukai Chen, Tianhong Faqir, Yahya Nabi, Farhan Sci Rep Article Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts. Nature Publishing Group UK 2022-02-09 /pmc/articles/PMC8828847/ /pubmed/35140298 http://dx.doi.org/10.1038/s41598-022-06321-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kalhoro, Muhammad Talib Zhang, Hong Kalhoro, Ghulam Mujtaba Wang, Fukai Chen, Tianhong Faqir, Yahya Nabi, Farhan Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae |
title | Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae |
title_full | Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae |
title_fullStr | Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae |
title_full_unstemmed | Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae |
title_short | Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae |
title_sort | fungicidal properties of ginger (zingiber officinale) essential oils against phytophthora colocasiae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828847/ https://www.ncbi.nlm.nih.gov/pubmed/35140298 http://dx.doi.org/10.1038/s41598-022-06321-5 |
work_keys_str_mv | AT kalhoromuhammadtalib fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae AT zhanghong fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae AT kalhoroghulammujtaba fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae AT wangfukai fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae AT chentianhong fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae AT faqiryahya fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae AT nabifarhan fungicidalpropertiesofgingerzingiberofficinaleessentialoilsagainstphytophthoracolocasiae |